• Title/Summary/Keyword: 열전달 모형

Search Result 62, Processing Time 0.028 seconds

A Generalized Model for the Prediction of Thermally-Induced CANDU Fuel Element Bowing (CANDU 핵연료봉의 열적 휨 모형 및 예측)

  • Suk, H.C.;Sim, K-S.;Park, J.H.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.811-824
    • /
    • 1995
  • The CANDU element bowing is attributed to actions of both the thermally induced bending moments and the bending moment due to hydraulic drag and mechanical loads, where the bowing is defined as the lateral deflection of an element from the axial centerline. This paper consider only the thermally-induced bending moments which are generated both within the sheath and the fuel and sheath by an asymmetric temperature distribution with respect to the axis of an element The generalized and explicit analytical formula for the thermally-induced bending is presented in con-sideration of 1) bending of an empty tube treated by neglecting the fuel/sheath mechanical interaction and 2) fuel/sheath interaction due to the pellet and sheath temperature variations, where in each case the temperature asymmetries in sheath are modelled to be caused by the combined effects of (i) non-uniform coolant temperature due to imperfect coolant mixing, (ii) variable sheath/coolant heat transfer coefficient, (iii) asymmetric heat generation due to neutron flux gradients across an element and so as to inclusively cover the uniform temperature distributions within the fuel and sheath with respect to the axial centerline. As the results of the sensitivity calculations of the element bowing with the variations of the parameters in the formula, it is found that the element bowing is greatly affected relatively with the variations or changes of element length, sheath inside diameter, average coolant temperature and its variation factor, pellet/sheath mechanical interaction factor, neutron flux depression factor, pellet thermal expansion coefficient, pellet/sheath heat transfer coefficient in comparison with those of other parameters such as sheath thickness, film heat transfer coefficient, sheath thermal expansion coefficient and sheath and pellet thermal conductivities.

  • PDF

Draw Resonance in Non-isothermal Spinning (비등온 방사공정에서의 Draw Resonance)

  • 현재천
    • The Korean Journal of Rheology
    • /
    • v.1 no.1
    • /
    • pp.71-79
    • /
    • 1989
  • 임계연신비로 특징지어지는 비등온 방사공정에서의 Draw Resonance 발생을, White 의 변형속도에 따라 변하는 물질의 이완시간 모델에 의한 convected Maxwell 유체의 방사 모형을 사용해서 연구했다. 임계연신비의 계산에는 다른 연구자들이 이용하는 통상의 복잡 한 수치계산인 eigenvalue 방법을 쓰지 않고 전파하는 동적 waves 에 근거한 간단한 Hyun 의 이론을 사용했다. 그 결과 Staton Number와 냉각 공기온도로서 나타내지는 방사공정의 냉각이 공정을 안정시킨다는 것이 밝혀졌다. 다시 말해서 연신점도가 변형후화인 유체이거 나 변형박화인 유체이거난 상관없이 항상 Stanton Number가 켜지거나 또는 냉각공기온도 가 낮아질수록(즉냉각효과가 커질 때) 임계연신비가 커지는 것이다(단변형박화 dvcp의 빌부 구간을 제외하고) 한편 Draw Resonacnce 에 미치는 냉각의 효과는 무차원 이완시간(a Weissenberg Number 혹은 a Deborah number)이 커질수록 작아진다는 것도 발견됐다. 이 것은 process Time 이 작아지면 열전달이 작아지기 때문이다. 이러한 내용들은 다른 연구 자들의 결과와도 잘 부합된다.

  • PDF

A low-Reynolds-number 4-equation heat transfer model for turbulent separated and reattaching flows (난류 박리 및 재부착 유동의 해석을 위한 저레이놀즈수 4-방정식 난류 열전달 모형의 개발)

  • Rhee Gwang-Hoon;Sung Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.37-42
    • /
    • 1995
  • In the present study, an improved version of 4-equation low-Reynolds-number 4-equation model is proposed. The equations of the temperature variance ($k_{\theta}$) and its dissipation rate(${\varepsilon}_{\theta}$) are solved, in concert with the equations of the turbulent kinetic energy(k) and its dissipation rate(${\varepsilon}$). In the present model, the near-wall effect and the non-equilibrium effect are fully taken into consideration. The validation of the model is then applied to the turbulent flow behind a backward-facing step and the flow over a blunt body. The predicted results of the present model are compared and evaluated with the relevant experiments.

  • PDF

Rotary Kiln Flame and Heat Transfer Model - Analysis of Thermal Performance according to Fuel (로터리킬른 화염 및 열전달 모형 - 연료에 따른 열 성능 분석 사례)

  • Choi, Donghwan;Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.4
    • /
    • pp.9-18
    • /
    • 2017
  • This paper is to suggest a simple flame model for the analysis of an internal flame of rotary kilns and to present the application cases. Reaction rates in the multi combustion stages of the selected solid fuel were calculated considering the reaction rates with the Arrhenius type equations. In addition, primary and secondary air flow arrangement were considered. As a simple application case, the combustion trends according to the different solid fuels were described. Improved operating conditions as related with the fuel characteristics were shown to be important for the stable combustion characteristics and the performance of the reactors as defined by the exit temperature of the solid materials.

Prediction of Jet Impingement Heat Transfer on a Cylindrical Pedestal (원형블록이 있는 벽면충돌제트 열전달 해석)

  • Park, Tae-Seon;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.141-149
    • /
    • 2002
  • A numerical simulation is performed for the cooling heat transfer of a heated cylindrical pedestal by an axisymmetric jet impingement. Based on the k- $\varepsilon$- f$\sub$${\mu}$/ model of Park et at., the linear and nonlinear stress-strain relations are extended. The Reynolds number based on the jet diameter(D) is fixed at Re$\sub$D/ = 23000. The local heat transfer coefficients are compared with available experimental data. The predictions by k- $\varepsilon$-f$\sub$${\mu}$/ model are in good agreement with the experiments, whereas the standard 7- f model does not properly resolve the flow structures.

A study on airside performance of finned-tube heat exchanger according to fin combination and fin pitch variation of using large scale model (확대모형을 이용한 휜-관 열교환기의 휜 형상 및 휘 간격 변화에 따른 공기측 성능에 관한 연구)

  • Byun, Ju-Suk;Jeon, Chang-Duk;Lee, Jin-Ho;Kim, Jin-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.281-287
    • /
    • 2005
  • This study investigates the pressure drop and heat transfer characteristics of heat exchanger according to the combination of fin configuration and fin pitch of each row by the similitude experiments with the finned-tube geometry scaled as large as four times Finned-tube heat exchanger has 2 rows, and fin geometry consists of two cases, louver-louver and louver-slit. Fin pitch is varied with three types in each case, 6-6 mm, 8-8 mm and 8-6 mm. Results show that total heat transfer can be occurred evenly at each row by varying the fin pitch of 1st row and 2nd row. Heat transfer rate and pressure drop characteristics change according to the combination for fin geometry and fin pitch.

  • PDF

Heat Recovery from a 1 MW Class Gas Engine CHP System: 100 kW Class Model Test (온수, 증기 동시 발생형 가스엔진 열병합발전의 배열회수 특성: 100 kW급 모형 실험)

  • Ahn, Joon;Kim, Hyouck-Ju;Choi, Kyu-Sung;Song, Dae-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.345-350
    • /
    • 2008
  • The present study has been conducted to develop a heat recovery system for a 1 MW class gas engine based cogeneration system. In the cogeneration system, heat is recovered from two parts, which are jacket water and exhaust gas. The heat from the jacket water is recovered by a plate type heat exchanger and used for the room heating and/or hot water supply. The heat from the exhaust gas is used to generate steam. For both of the heat recovery devices, 1/5 scaled tests are performed and the data are compared to the conventional correlations for the design.

  • PDF

Heat Transfer Characteristics of Oval-Tube Heat Exchanger (타원관 열교환기의 열전달 특성)

  • 윤점열;이욱용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.292-301
    • /
    • 2000
  • This study experimentally investigates an air-side performance of oval tube heat exchanger against round tube heat exchanger using scaled-up model experiment for home air conditioners. A plain fin and round tube heat exchanger with 21 FPI(fins per inch) was used as a reference heat exchanger, and these were applied equally to 4 oval tube heat exchangers. Oval tube samples were designed with the same perimeter as 7.5mm diameter round tube, and their aspect ratios were 1:2, 1:3, respectively. In this study, the heat transfer and pressure drop characteristics of oval tube heat exchangers against round tube heat exchanger were also compared to one another, and an optimal samples for home air conditioners was recommended. And, general performance characteristics for an optimum oval tube samples chosen in this work was compared with round tube heat exchanger.

  • PDF

A new element elimination model to predict fire-induced damage on an underground structure (요소제거기법을 적용한 지하구조물의 화재손상 예측모델 개발)

  • Chang, Soo-Ho;Choi, Soon-Wook;Bae, Gyu-Jin;Ahn, Sung-Youll
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.313-327
    • /
    • 2008
  • Thermo-mechanical coupled behavior of an underground structure during a fire accident have not been fully understood yet. Moreover, when such a thermo-mechanical coupled behavior is not considered in numerical analyses based on conventional heat transfer theory, fire-induced damage zone in an underground structure can be considerably underestimated. This study aims to develop a FEM-based numerical technique to simulate the thermo-mechanical coupled behavior of an underground structure in a fire accident. Especially, an element elimination model is newly proposed to simulate fire-induced structural loss together with a convective boundary condition. In the proposed model, an element where the maximum temperature calculated from heat transfer analysis is over a prescribed critical temperature is eliminated. Then, the proposed numerical technique is verified by comparing numerical results with experimental results from real fire model tests. From a series of parametric studies, the key parameters such as critical temperature, element size and temperature-dependent convection coefficients are optimized for the RABT and the RWS fire scenarios.

  • PDF

Modeling of Fin-Tube Heat Exchanger (핀-관 열교환기의 모델링)

  • 박희용;이관수;박동규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.952-961
    • /
    • 1989
  • The purpose of this study is to investigate the behavior of operational and design factors on the performance characteristics of a horizontal fin-tube heat exchanger under phase change conditions for refrigerant. The flow and heat transfer in the heat exchanger are simulated numerically taking into account the variations of heat transfer coefficients, thermodynamic and flow properties of refrigerant, and the axial heat conduction in the tube wall. As the results of this study, it was found that the annular flow model was more reasonable physically than the homogeneous one for the two phase flow of refrigerant and axial heat conduction of tube wall did not have a great influence on the analysis. The effects of refrigerant pressure, mass flow rate of air, diameter of tube and the number of fins per unit length of tube were also discussed.