• Title/Summary/Keyword: 열적

Search Result 4,283, Processing Time 0.039 seconds

Electrical Properties of High Impact Polystyrene (HIPS)/Thermoplastic Urethane (TPU) Blend with Poly(styrene-co-maleic anhydride) as a Compatibilizer (상용화제 Poly(styrene-co-maleic anhydride) 첨가에 따른 고충격 폴리스티렌 (HIPS)/Thermoplastic Urethane (TPU) 블렌드의 전기적 특성)

  • Lee, Young-Hee;Lee, Tae-Hee;Kim, Won-Jung;Kim, Tae-Young;Yoon, Ho-Gyu;Suh, Kwang-S.
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.251-255
    • /
    • 2008
  • This study suggested antistatic material which can increase anti-static properties and mechanical strength by mixing polystyrene for conveying electronic stuffs with metal salt and ester compound as a anti-static agent. We studied about mechanical, thermal and electrical characteristics by changing the contents of MAH of poly(styrene-co-maleic anhydride), compatibilizer. As the result of measuring residue space charge of the blends of HIPS(75)/TPU(25)/poly(styrene-co-maleic anhydride)(MAH weight ratio : 25, 32, 43.5 wt%), we could find small residue charge in the blend which MAH(25 wt%) was added and it showed the highest values in tensile strength. Additionally we found out the material to which compatibilizer was added kept better anti-static properties than one to which compatibilizer was not added. In the event we could confirm that the adding of PS-co-MAH enables two polymers were mixed well when HIPS/TPU was blended and anti-static agent made easier dissipative in the blend.

Rheological Properties and Foaming Behaviors of Modified PP/Nano-filler Composites (개질 폴리프로필렌/나노필러 복합체의 유변학적 특성 및 발포거동)

  • Yoon, Kyung Hwa;Lee, Jong Won;Kim, Youn Cheol
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.494-499
    • /
    • 2013
  • Modified polypropylene (m-PP) was fabricated by furfuryl sulphide (FS) as branching agent and m-PP/nano-filler composites were prepared with silicate and multi-walled carbon nanotube (MWCNT), using a twin screw extruder. The chemical structures and thermal properties of the m-PP were investigated by FTIR and DSC. The chemical structure of the m-PP was confirmed by the existence of =C-H stretching peak of the branching agent at 3100 $cm^{-1}$. There was no district change in melting temperature in case of m-PP, but a certain increase in crystallization temperature was notified and the increase was in the range of $10-20^{\circ}C$. The rheological properties, filler dispersion and foaming behaviors of the m-PP/nano-filler composites were investigated by dynamic rheometer, X-ray diffractometer (XRD) and scanning/transmission electron microscope (SEM/TEM). m-PP/nano-filler composites showed a high complex viscosity at a low frequency, an increase in melt elasticity, and a high shear thinning effect. Compared to pure PP, m-PP and m-PP/nano-filler composites were sufficient to enhance the foaming behavior.

Reinforcement, Thermal and Fire Retardant Improvement of Phenolic Composites by Surface Treatment of CFRP Chip (CFRP Chip 표면처리에 따른 페놀복합재료의 강화, 내열성 및 난연성 향상)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Gu, Ga-Young;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.13 no.2
    • /
    • pp.58-63
    • /
    • 2012
  • CFRP chip is the byproduct from carbon fiber reinforced plastic (CFRP) processing. CFRP chip is not simply a waste mainly composed of fine carbon fiber and epoxy resin. CFRP chip keeps matrix to maximize their reinforcing effect. To obtain a uniform length of carbon fiber in CFRP chip, chip was chopped ina mortar. CFRP chip should be purified to get better interface adhesion. Epoxy resin on the carbon fiber was removed by $H_2O_2$ surface etching treatment. Optimal dispersion and fabrication conditions of CFRP chip embedded in phenolic resin were determined by thermal stability for fire retardant applications. CFRP chip-phenolic composite exhibits better mechanical and thermal properties than neat phenolic resin. Surface condition of CFRP chip-phenolic composite was evaluated by static contact angle measurement. Contact angle of CFRP chip-phenolic composite was greater than neat phenolic due to heterogeneous condition of fine carbon fibers. From the evaluation for fire retardant (ASTM D635-06) test, thermal stability of CFRP chip-phenolic composite was found to be improved with higher concentration of CFRP chip.

The Thermal and Mechanical Properties of Epoxy Composites Including Boron Carbide Surface Treated with Iron Oxide and Tungsten (철산화물과 텅스텐으로 표면 처리된 보론카바이드를 포함하는 에폭시 조성물의 열적·기계적 물성)

  • Kim, Taehee;Lee, Wonjoo;Seo, Bongkuk;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.19 no.3
    • /
    • pp.113-117
    • /
    • 2018
  • Boron carbide is lower in hardness than diamond or boron nitride but has a hardness of more than 30 GPa and is used for manufacturing tank armors and ammo shells due to its high hardness. It is also used as a neutron absorber due to its ability to absorb neutrons, which is increasing its use in nuclear power projects. Neutrons have no interaction with electrons and are known to pass through the material without interactions. Along with boron carbide, the atoms with high interaction with neutrons are hydrogen, and high hydrogen concentration polyesters and epoxy polymers including boron are used as materials for manufacturing products for nuclear power generation waste. In this paper, the surface of boron carbide is treated with iron oxide and tungsten to improve interaction between modified boron carbide and epoxy polymer. XRD and XPS were used to confirm that iron oxide and tungsten are well attached on the surface of boron carbide, respectively. The mechanical strength of the surface treated boron carbide was measured by a universal testing machine (UTM) and the dynamic characteristics of the cured product were observed by using a dynamic analyzer (DMA).

Preparation and Flame Retardancy of Poly(benzoxazole imide) Having Trifluoromethyl Group in the Main Chain (주사슬에 Trifluoromethyl 그룹을 갖는 Poly(benzoxazole imide)의 제조 및 난연 특성)

  • Yeom, Jin-Seok;Choi, Jae-Kon;Lee, Chang-Hoon
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.355-363
    • /
    • 2012
  • A series of poly(hydroxyamide)s (PHAs) having trifluoromethyl group were prepared by direct polycondensation of aromatic diimide-dicarboxylic acids with 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane by thionyl chloride and triethyl amine in N-methyl-2-pyrrolidinone (NMP). The PHAs exhibited inherent viscosity in the range of 0.54-0.96 dL/g at $35^{\circ}C$ in DMAc solution. All PHAs were readily soluble in a variety of organic solvents, whereas the polybenzoxazoles (PBOs) were quite insoluble except partially soluble in sulfuric acid. PHAs were converted to PBOs by thermal cycling reaction with heat of endotherm. The maximum weight loss temperature of the PHAs occurred in the range of $559-567^{\circ}C$. The PBOs showed relatively high char yields in the range of 47-59%. Pyrolysis Combustion Flow Calorimeter (PCFC) results of the PBOs showed 12-19 W/g heat release rate (HRR), and 2.7-3.6 kJ/g total heat release (total HR). The HRR of PBO 1 showed the lowest value of 12 W/g, which was 37% lower than that of PBO 3 (19 W/g).

Preparation and Stability of Silyl Adlayers on 2×1-Reconstructed and Modified Si(100) Surfaces (Si(100)-2×1 표면과 개질된 Si(100) 표면 상에서 실릴 (Silyl) 흡착충의 형성과 안정성)

  • Jo, Sam-K.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • Saturation-coverage silyl, $-SiH_3(a)$, overlayers were prepared from $Si_2H_6$ adsorption on three comparative surfaces: clean unmodified; D-precovered; and atomically roughened Si(100). Together with its precursor-mediated adsorption behavior, the surface reactivity of $Si_2H_6$ was found to be the highest on the unmodified Si(100)-$2{\times}1$ surface. This was correlated with its dissociative adsorption mechanism, in which both the $H_3Si-SiH_3$ bond scission and the dual surface $Si-SiH_3(a)$ bond formation require a surface dangling bond 'pair'. The unusually high thermal stability of $-SiH_3(a)$ on the unmodified surface was ascribed to a nearly close-packed $-SiH_3(a)$ coverage of ${\sim}0.9$ monolayer and the consequent lack of dangling bonds on the silyl-packed surface.

Study of Multi-stacked InAs Quantum Dot Infrared Photodetectors Grown by Metal Organic Chemical Vapor Deposition (유기금속화학기상증착법을 이용한 적층 InAs 양자점 적외선 수광소자 성장 및 특성 평가 연구)

  • Kim, Jung-Sub;Ha, Seung-Kyu;Yang, Chang-Jae;Lee, Jae-Yel;Park, Se-Hun;Choi, Won-Jun;Yoon, Eui-Joon
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.217-223
    • /
    • 2010
  • We grew multi-stacked InAs/$In_{0.1}Ga_{0.9}As$ DWELL (dot-in-a-well) structure by metal organic chemical vapor deposition and investigated optical properties by photoluminescence and I-V characteristics by dark current measurement. When stacking InAs quantum dots (QDs) with same growth parameter, the size and density of QDs were changed, resulting in the bimodal emission peak. By decreasing the flow rate of TMIn, we achieved the uniform multi-stacked QD structure which had the single emission peak and high PL intensity. As the growth temperature of n-type GaAs top contact layer (TCL) is above $600^{\circ}C$, the PL intensity severely decreased and dark current level increased. At bias of 0.5 V, the activation energy for temperature dependence of dark current decreased from 106 meV to 48 meV with increasing the growth temperature of n-type GaAs TCL from 580 to $650^{\circ}C$. This suggest that the thermal escape of bounded electrons and non-radiative transition become dominant due to the thermal inter-diffusion at the interface between InAs QDs and $In_{0.1}Ga_{0.9}As$ well layer.

Analysis of Thermal Heat Island Potential by Urbanization Using Landsat-8 Time-series Satellite Imagery (Landsat-8 시계열 위성영상을 활용한 도심지 확장에 따른 열섬포텐셜 분석)

  • Kim, Taeheon;Lee, Won Hee;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.305-316
    • /
    • 2018
  • As the urbanization ratio increases, the heat environment in cities is becoming more important due to the urban heat island. In this study, the heat island spatial analysis was calculated and conducted for analysis of urban thermal environment of Sejong city, which was launched in 2012 and has been developed rapidly. To analyze the ratio and change rate of urban area, a multi temporal land cover map (2013 to 2015 and 2017) of study area is generated based on Landsat-8 OLI/TIRS (Operational Land Imager / Thermal Infrared Sensor) satellite imagery. Then, we select an TIR (Thermal Infrared) band from the two TIR bands provided by the Landsat-8, which is used for calculating the heat island potential, through the accuracy evaluation of the brightness temperature and AWS (Automatic Weathering Station) data. Based on the selected band and surface emissivity, land surface temperature is calculated and the estimated heat island potential change is analyzed. As a result, the land surface temperature of the high ratio and change rate of urban area was significantly higher than the surrounding area around $3^{\circ}C$ to $4^{\circ}C$, and the heat island potential was also higher around $4^{\circ}C$ to $5^{\circ}C$. However, the heat island phenomenon was alleviated in urban areas with high rate of change that also show high green area ratio. Therefore, we demonstrated that dense urban area increases the possibility of inducing heat island, but it can mitigate the heat island through green areas.

The Permeation Behaviors of $H_2S/CH_4$ using Polyimide Hollow Fiber Membranes (폴리이미드 중공사막을 이용한 $H_2S/CH_4$ 투과거동에 관한 연구)

  • Lee, Hyung-Keun;An, Young-Mo;Kim, Dae-Hoon;Jo, Hang-Dae;Seo, Yong-Seog;Park, Yeong-Seong
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.261-267
    • /
    • 2009
  • Polyimide which is the glassy polymer has high chemical resistance, thermal stability and high mechanical property. In this study, the polyimide hollow fiber membranes were prepared by the dry-jet wet phase inversion in order to investigate the permeation porperties of the $H_2S$ and $CH_4$. The morphology of prepared hollow fiber membranes and their permeation behaviors of $H_2S$ and $CH_4$ before and after silicon coating were evaluated. The permeance of $H_2S$ and $H_2S/CH_4$ selectivity increased due to plasticization with increasing the feed pressure. The permeance of KSM03b and selectivity of KSM03d were highest among the three type membranes used this experiments. The permeance decreased but the $H_2S/CH_4$ selectivity increased with increasing the air gap. The permeance reduced after silicon coating. However, the selectivity increased and the selectivity of KSM03d was 275 at 7 atm.

Anhydrous Polymer Electrolyte Membranes Prepared From Polystyrene-b-Poly (hydroxyl ethyl methacrylate) Block Copolymer (Polystyrene-b-Poly(hydroxyl ethyl methacrylate) 블록 공중합체를 이용한 무가습 고분자 전해질막)

  • Kim, Jong-Hak;Seo, Jin-Ah;Lee, Do-Kyung;Roh, Dong-Kyu;Shul, Yong-Gun
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.302-309
    • /
    • 2009
  • A block copolymer of polystyrene-b-poly (hydroxyl ethyl methacrylate), PS-b-PHEMA, was synthesized via atom transfer radical polymerization (ATRP) and crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via esterification of the -OH groups of PHEMA in the block copolymer and the -COOH groups of IDA. Upon doping with $H_3PO_4$ to form imidazole-$H_3PO_4$ complexes, the proton conductivity of the membranes continuously increased as the content of $H_3PO_4$ increased. In addition, both the tensile strength and the elongation at break increased with IDA content. A proton conductivity of 0.01 S/cm at $100^{\circ}C$ was obtained for the PS-b-PHEMA/IDA/$H_3PO_4$ membrane with [HEMA]:[IDA]:[$H_3PO_4$] = 3:4:4 under anhydrous conditions. All of the PS-b-PHEMA/IDA/$H_3PO_4$ membranes were thermally stable up to $350^{\circ}C$, as revealed by thermal gravimetric analysis (TGA).