• Title/Summary/Keyword: 열적

Search Result 4,288, Processing Time 0.026 seconds

An Investigation of Quantitative Risk Assessment Methods for the Thermal Failure in Targets using Fire Modeling (화재모델링을 이용한 목표 대상물의 열적 손상에 대한 정량적 위험성 평가방법의 고찰)

  • Yang, Ho-Dong;Han, Ho-Sik;Hwang, Cheol-Hong;Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.116-123
    • /
    • 2016
  • The quantitative risk assessment methods for thermal failure in targets were studied using fire modeling. To this end, Fire Dynamics Simulator (FDS), as a representative fire model, was used and the probabilities related to thermal damage to an electrical cable were evaluated according to the change in fire area inside a specific compartment. 'The maximum probability of exceeding the damage thresholds' adopted in a conservative point of view and 'the probability of failure' including the time to damage were compared. The probability of failure suggested in the present study could evaluate the quantitative fire risk more realistically, compared to the maximum probability of exceeding the damage thresholds with the assumption that thermal damage occurred the instant the target reached its minimum failure criteria in terms of the surface temperature and heat flux.

A Study on Thermal Characteristics of Biodiesel (바이오디젤의 열적특성에 관한 연구)

  • Bae, Byong-Mok;Lim, Woo-Sub;SaKong, Seong-Ho;Mok, Yun-Soo;Choi, Jae-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.92-97
    • /
    • 2010
  • A study is conducted on thermal characteristics of biodiesel which is already being produced in many countries because of its stable supply of energy in non oil-producing countries and economical benefits against increasing oil price, and environment conservation. So biodiesel has been used as important energy source in the fuel fields and a mount of production has increased year by year. Therefore, it is very important to find out the thermal characteristics of biodiesel for ignition temperature, maximum pressure and thermal behavior. The purpose of this study is to compare on thermal characteristics of biodiesel, petroleum diesel and those mixtures. Also, the main study was performed by flash point testers and modified closed type of pressure vessel test (MCPVT). Based on the data of flash point and MCPVT, the ignition temperature and the maximum pressure of biodiesel was $182^{\circ}C$ and 40.1bar, and petroleum diesel was $54^{\circ}C$ and 29.8bar.

Characteristics of Magnetic Tunnel Junctions Incorporating Nano-Oxide Layers (나노 산화층을 사용한 자기터널접합의 특성)

  • Chu, In-Chang;Chun, Byong-Sun;Song, Min-Sung;Lee, Seong-Rae;Kim, Young-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.136-139
    • /
    • 2006
  • The tunneling magnetoresistance (TMR) ratios of magnetic tunnel junctions (MTJs), in general, decrease abruptly above 250$^{\circ}C$ due to Mn interdiffusion from an antiferromagnet IrMn layer to a ferromagnetic CoFe and/or a tunnel barrier. To improve thermal stability, we prepared MTJs with nano-oxide layers. Using a MTJ structure consisting of underlayer CoNbZr 4/bufferlayer CoFe 10/antiferromaget IrMn 7.5/pinned layer CoFe 3/tunnel barrier AlO/freelayer CoFe 3/capping CoNbZr 2 (nm), we placed a nano-oxide layer (NOL) into the underlayer or bufferlayer. Then, the thermal, structural and magneto-electric properties were measured. The TMR ratio, surface flatness, and thermal stability of the MTJs with NOLs were promoted.

A Study on the Effective Method for Linking Time Series Triangulation Points (시계열 삼각점의 효율적인 연계방안에 대한 연구)

  • Kyung, Myoung Yeol;Song, Yeong Sun;Park, Kyeong Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.235-243
    • /
    • 2018
  • The national geodetic control point is very important as a framework for drafting plans for construction and civil engineering works as well as mapping for various development and utilization plans related to the national land. Since the 1910s, Korea has established and managed the national geodetic control points, the triangulation points and the benchmarks. Currently, these point information is provided through the land information platform. The national geodetic control point has been changed through the process of loss, re-establishment, and re-location by the events and environment of the times. Therefore, it is very important to provide information by linking these past national geodetic control points in time series. In this study, we classified the triangulation points into five groups(Japanese Government General of Korea, YUCCA Project, National Construction Institute, Past Control Point Data Sheet, and Current) by age and then suggests a method to match the same control points in each time period. Finally we also applied the proposed method to Jecheon and analyzed the results.

Thermal Characteristics of Designed Heat Sink for 13.5W COB LED Down Light (주거용 13.5W COB LED 다운라이트 방열판 형상 설계에 따른 열 특성 분석)

  • Kwon, Jae-Hyun;Kim, Hyo-Jun;Park, Keon-Jun;Kim, Yong-Kab;Hoang, Geun-Chang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.5
    • /
    • pp.561-566
    • /
    • 2014
  • The high power COB(Chip on Board) LED, densely arranged chips on a board, are increasing to resolve heat problems in LED that has luminous semiconductor chips as main materials. In case of high-power COB LED, protection against heat is necessary due to the power consumption is high. Also if the temperature of device increases, the optical emission becomes less efficient and the life rapidly reduces due to thermal stress. This study packaged 13.5W COB LED and heat sink with difference form and produced 13.5W COB LED down-light heat sink by analyzing the thermal modes with Solidworks Flow Simulation. And finally it analyzed and evaluated the thermal modes using contacting and non-contacting thermometers.

Mechanical and Thermal Characteristics of Cement-Based Composite for Solar Thermal Energy Storage System (태양열 에너지 저장시스템 적용을 위한 시멘트 기반 복합재료의 역학 및 열적 특성)

  • Yang, In-Hwan;Kim, Kyoung-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.9-18
    • /
    • 2016
  • The thermal and mechanical properties of fiber-reinforced cement-based composite for solar thermal energy storage were investigated in this paper. The effect of the addition of different cement-based materials to Ordinary Portland cement on the thermal and mechanical characteristics of fiber-reinforced composite was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. Test results showed that the residual compressive strength of mixtures with OPC and slag was greatest among cement-based composite. Thermal conductivity of mixtures including graphite was greater than that of any other mixtures, indicating favor of graphite for improving thermal transfer in terms of charging and discharging in thermal energy storage system. The addition of CSA or zirconium increased specific heat of fiber-reinforced cement-based composite. Test results of this study could be actually used for the design of thermal energy storage system in concentrating solar power plants.

A Study on Thermal and Mechanical Properties of Vapor Grown Carbon Nanofibers-Reinforced Epoxy Matrix Composites (기상성장 탄소나노섬유/에폭시 복합재료의 열적 및 기계적 특성에 관한 연구)

  • Park Soo-Jin;Lee Eun-Jung;Lee Jea-Rock
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.481-485
    • /
    • 2005
  • In this work, the thermal and mechanical properties of vapor grown carbon nanofibers (VGCNFs)-reinforced difunctional epoxy (EP) composites were investigated in the presence of the 0, 0.1, 0.5, 1.0, and $2wt\%$ VGCNFs. The thermal properties of the VGCNFs/EP composites were studied by thermo-mechanical analysis (TMA) and dynamic mechanical analysis (DMA). The mechanical properties of the VGCNFs/EP composites were also examined by universal testing machine (UTM), falling impact test, and the friction and wear tests. From experimental results, the thermal and mechanical properties of the VGCNFs/EP composites were improved with increasing the VGCNFs contents. This was due to the increase of crosslinking structure of the composites, resulting in improving the mechanical interlockings between VGCNFs and epoxy resins in the present composite system.

An experimental study on the thermal entrance lengths for viscoelastic polymer solutions in turbulent tube flow (점탄성 특성을 가진 폴리머용액의 난류유동 열적입구길이에 관한 실험적 연구)

  • 유상신;황태성;엄정섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1189-1196
    • /
    • 1988
  • Thermal entrance lengths of turbulent tube flow for viscoelastic polymer solutions are investigated experimentally in the recirculating flow system with tubes of inside diameters 8.5mm(L/D=710) and 10.3mm(L/D=1158), respectively. In the present system, the hydrodynamic and thermal boundary layers develop simultaneously from the beginning of the test section. To provide the boundary condition of constant heat flux at the wall, the test tubes are heated directly by electricity. The polymer solution used in the current study is 1000 wppm aqueous solution of polyacrylamide(Separan AP-273). The apparent viscosity of the polymer solutions circulating in the flow system are measured by the capillary tube viscometer at regular time intervals. Thermal entrance lengths vary due to the rate of degradation. The entrance lengths of degraded polymer solutions are about 500~600 times the diameter. However, the entrance lengths of fresh polymer solutions are greater than the lengths of the test tubes used in this study suggesting that thermal entrance lengths for viscoelastic polymer solutions are greater than 1100 tube times the diameters. Friction factor is almost insensitive to the degradation, but the heat transfer $j_{H}$-factor is affected seriously by degradation. Based on the present experimental data of fresh solutions a correlation for the heat transfer $j_{H}$-factor is presented.ted.

Study on the Long-term Thermal Stability by DSC & ARC and its ISCO behaviors with different AP Quality (DSC, ARC, ISCO를 활용한 다양한 순도를 가진 AP의 장기 열적안정성 연구)

  • Kim, Seunghee;Kwon, Kuktae;Lee, So Jung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.59-65
    • /
    • 2018
  • We conducted an isothermal slow cook-off(ISCO) test for an aluminized explosive containing AP. The sample bulged before the run-away reaction, and therefore we were unable to obtain the ISCO data. However, these phenomena did not occur for a certain AP grade, which means that the quality of the AP exerted a significant effect on the thermal stability of the explosive formulation. In this study, we investigated the thermal stability difference between a good and bad AP grade. First, we characterized the thermal properties of all APs by Differential Scanning Calorimeter(DSC) and correlated them to the ISCO phenomena. In addition to the DSC study and ISCO test, we also investigated and calculated the SADT and self-heating rate by the ARC of the different AP qualities to interpret the thermal stability of the explosive formulation. Moreover, we investigated the impurity of the AP and a preparation method to remove the included impurity and crystallization. Finally, we implemented qualification methods to identify the quality of AP by DSC using a high-pressure crucible.

Thermal Margin Analysis of the Korea Nuclear Unit 1 Reactor Core Consisting of Standard or Optimized Fuel Assemblies (표준 핵연료집합체 또는 최적 핵연료집합체가 장전된 원자력 1호기 원자로심의 열적여유도 분석)

  • Hyun Koon Kim;Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.155-160
    • /
    • 1984
  • Analyzed is the thermal margin of the Korea Nuclear Unit 1 (KNU-1) reactor core consisting of either 14 x 14 standard fuel assemblies (SFA) or optimized fuel assemblies (OFA). Employed for the analysis are two different thermal design methods; traditional and statistical thermal design method. Compared to the traditional design thermal method, the statistical thermal design method improves the core thermal margin utilizing best-estimate values for the core operating parameters combining their uncertainties in a statistical manner. Calculations are performed using a steady state and transient thermal-hydraulic analysis computer program, COBRA-IV-i. Calculated results show that the statistical thermal design method significantly improves the thermal margin and satisfies the core thermal design base of the KNU-1 SFA and OFA core. However, the thermal design base can not be met, if the traditional thermal design method is employed for the OFA role analysis.

  • PDF