DOI QR코드

DOI QR Code

Study on the Long-term Thermal Stability by DSC & ARC and its ISCO behaviors with different AP Quality

DSC, ARC, ISCO를 활용한 다양한 순도를 가진 AP의 장기 열적안정성 연구

  • Kim, Seunghee (The 4th R&D Institute - 2nd Directorate, Agency for Defense Development) ;
  • Kwon, Kuktae (The 4th R&D Institute - 2nd Directorate, Agency for Defense Development) ;
  • Lee, So Jung (The 4th R&D Institute - 2nd Directorate, Agency for Defense Development)
  • Received : 2017.02.08
  • Accepted : 2018.02.06
  • Published : 2018.04.01

Abstract

We conducted an isothermal slow cook-off(ISCO) test for an aluminized explosive containing AP. The sample bulged before the run-away reaction, and therefore we were unable to obtain the ISCO data. However, these phenomena did not occur for a certain AP grade, which means that the quality of the AP exerted a significant effect on the thermal stability of the explosive formulation. In this study, we investigated the thermal stability difference between a good and bad AP grade. First, we characterized the thermal properties of all APs by Differential Scanning Calorimeter(DSC) and correlated them to the ISCO phenomena. In addition to the DSC study and ISCO test, we also investigated and calculated the SADT and self-heating rate by the ARC of the different AP qualities to interpret the thermal stability of the explosive formulation. Moreover, we investigated the impurity of the AP and a preparation method to remove the included impurity and crystallization. Finally, we implemented qualification methods to identify the quality of AP by DSC using a high-pressure crucible.

AP(Ammonium Perchlorate, $NH_4ClO_4$)를 포함하는 복합화약조성의 등온가열시험시, 일정 순도 이하의 AP를 사용하는 경우 "bulged"현상으로 인해 등온가열시험 결과를 얻을 수 없었다. 본 연구는 품질 혹은 순도에 따른 AP의 열적 안정성 차이에 대해 규명하기 위해 LOT 별 AP에 대해 DSC 결과를 분석하고, 그 분석결과를 등온가열시험 결과 및 ARC결과와 비교분석하였다. 또한 순도가 낮은 AP에 대해서는 재결정을 통해 포함된 불순물을 제거한 후 분석한 결과, 열적 안정성이 높아졌음을 확인하였다. DSC 고압팬을 사용하여 AP 순도를 결정하는 정량적 분석방법을 확립하였다.

Keywords

References

  1. Inder, P.S.K., Pratibha, S. and Gurdip, S., "nanocrystalline transition metal oxide as catalysts in the thermal decomposition of AP", Propellants, Explosives, Pyrotechnics, Vol. 34, No. 4, pp. 351-356, 2009. https://doi.org/10.1002/prep.200800025
  2. Prajakta, R.P. and Satyawati S.J., "Effect of nano-copper oxide and copper chromite on th thermal decomposition of AP", Propellants, Explosives, Pyrotechnics, Vol. 33, No. 4, pp. 266-270, 2008. https://doi.org/10.1002/prep.200700242
  3. Meirong S., Miao C. and Zhijun Z., "effect of Zn powers on the thermal decomposition of AP", Propellants, Explosives, Pyrotechnics, Vol. 33, No. 4, pp. 261-265, 2008. https://doi.org/10.1002/prep.200800222
  4. Leili L., Fengsheng L., Linghua T., Li M. and Yang Y., "effects of nanometer Ni, Cu, Al on the thermal decomposition of AP", Propellants, Explosives, Pyrotechnics, Vol. 29 No. 1, pp. 34-38, 2004. https://doi.org/10.1002/prep.200400026
  5. Tanlikulu, S.U., Eroglu, I., Bulutcu, A.N. and Ozkar, S., "The growth and dissolution of ammonium perchlorate crystals in a fluidized bed crystallizer", Journal of Crystal Growth, Vol. 194, pp.220-227, 1998. https://doi.org/10.1016/S0022-0248(98)00688-5
  6. Tufts, L.E. and Eichler, D.L., "Crystallization of ammonium perchlorate", United States patent, US3419899A, 1968.
  7. Zhang, G., Jin, S. and Li, L., "Thermal hazard assessment of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowutrzitane (TEX) by accelerating rate calorimeter (ARC), Journal of Thermal Analysis and Calorimetry, Vol. 126, No. 2, pp. 467-471, 2016. https://doi.org/10.1007/s10973-016-5567-7
  8. Tou J.C. and LF, W., "The thermokinetic performance of an Accelerating rate calorimeter", Thermochimica Acta. Vol. 48, No. 1, pp. 21-42, 1981. https://doi.org/10.1016/0040-6031(81)87019-0