• Title/Summary/Keyword: 열적지표

Search Result 80, Processing Time 0.03 seconds

Heat Flux Analysis of Lunar Lander for Potential Landing Candidate Area (달 착륙선의 착륙 후보지별 열 유입량 분석)

  • Park, Tae-Yong;Chae, Bong-Geon;Lee, Jang-Joon;Kim, Jung-Hoon;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.324-331
    • /
    • 2018
  • The thermal environment on lunar surface is more severe than that of earth's surface or low earth orbit because of the long daytime and nighttime due to 28 days of rotation cycle of moon. Thus, analyzing heat flux on lunar lander at potential landing sites is important to determine the landing site in its initial design phase. In this study, thermal model of lunar regolith that can simulate lunar surface temperature was constructed for analyzing thermal characteristics according to the potential landing sites of lunar lander. The heat flux analyses were performed various latitudes of equator, mid-latitude, polar regions, lunar mare and highland. In addition, we also investigated the heat flux of lunar lander when it is landed on adjacent area to hill.

Analysis of Temperature Change by Forest Growth for Mitigation of the Urban Heat Island (도시열섬 완화를 위한 녹지증가에 따른 온도변화 분석)

  • Yun, Hee Cheon;Kim, Min Gyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.143-150
    • /
    • 2013
  • Recently, environmental issues such as climate warming, ozone layer depletion, reduction of tropical forests and desertification are emerging as global environmental problems beyond national problems. And international attention and effort have been carried out in many ways to solve these problems. In this study, the growth of green was calculated quantitatively using the technique of remote sensing and temperature change was figured out through temperature extraction in the city. The land-cover changes and thermal changes for research areas were analyzed using Landsat TM images on May 2002 and May 2009. Surface temperature distribution was calculated using spectral degree of brightness of Band 6 that was Landsat TM thermal infrared sensor to extract the ground surface temperature in the city. As a result of research, the area of urban green belt was increased by $2.87km^2$ and the ground surface temperature decreased by $0.6^{\circ}C{\sim}0.8^{\circ}C$ before and after tree planting projects. Henceforth, if the additional study about temperature of downtown is performed based on remote sensing and measurement data, it will contribute to solve the problems about the urban environment.

Detection of Heat Change in Urban Center Using Landsat Imagery (Landsat 영상을 이용한 도심의 열변화 탐지)

  • Kang, Joon-Mook;Ka, Myung-Seok;Lee, Sung-Soon;Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.197-206
    • /
    • 2010
  • Recently, developed countries have continuously been trying to recognize many issues about heat island in urban area and to make up countermeasures for them. This research is designed to extract change of land cover in the area under condition of land development with satellite images and to analyze its effect on the heat change in there. Heat change upon change of land cover in daejeon was analyzed with the four Landsat satellite images taken in April 1985, August 1994, May 2001, and May 2009. In order to measure the temperature on the surface in the city, the land surface temperature was produced with Landsat TM Band 6. Heat change is to detected with it. As a result, The urban area has been increased up to 23.59 percent. On the other hand, the forest area has been decreased up to 27.91%. Due to the urbanization, the temperature on the surface in urban center was higher than surrounding area. In that case, the temperature of urban center area was higher 2.4 to $5.7^{\circ}C$ compared with the forest area.

Time series Analysis of Land Cover Change and Surface Temperature in Tuul-Basin, Mongolia Using Landsat Satellite Image (Landsat 위성영상을 이용한 몽골 Tuul-Basin 지역의 토지피복변화 및 지표온도 시계열적 분석)

  • Erdenesumbee, Suld;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.39-47
    • /
    • 2016
  • In this study analysis the status of land cover change and land degradation of Tuul-Basin in Mongolia by using the Landsat satellite images that was taken in year of 1990, 2001 and 2011 respectively in the summer at the time of great growth of green plants. Analysis of the land cover change during time series data in Tuul-Basin, Mongolia and NDVI (Normalized Difference Vegetation Index), SAVI (Soil-Adjusted Vegetation Index) and LST (Land Surface Temperature) algorithm are used respectively. As a result shows, there was a decrease of forest and green area and increase of dry and fallow land in the study area. It was be considered as trends to be a land degradation. In addition, there was high correlation between LST and vegetation index. The land cover change or vitality of vegetation which is taken in study area can be closely related to the temperature of the surface.

A Study on Selection of Optimal Satellite Imagery by Disaster Type (재해 유형별 최적 위성 영상 선정에 관한 연구)

  • Lim, SoMang;Kang, Ki-mook;Yu, WanSik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.279-279
    • /
    • 2021
  • 위성영상정보는 센서의 종류, 취득, 분석, 재난과 위성영상 특성 매칭 등의 제약으로 재난 상황에서 제한적으로 사용되었다. 일반적으로 인공위성의 종류는 탑재한 센서의 정보제공 능력 범위에 따라 분류 가능하며 이에 따라 대상 범위가 결정된다. 본 연구에서는 재난의 예측, 탐지, 사후처리를 위한 위성자료의 취득과 활용을 위해 다양한 위성과 탑재된 센서의 궤도, 공간 해상도, 파장대 등의 특성에 대하여 분석하고 재난유형별로 최적 위성영상을 선정하였다. 행정안전부에서는 재난과 재해의 유형을 자연재난(10종)과 사회재난(27종)으로 분류하였다. 위성영상 활용이 가능한 재난 유형은 가시적으로 확인이 가능한 자연재난에 해당하며 그 중 태풍, 홍수, 가뭄, 산불 등 총 4종의 재난유형별로 가용한 최적의 위성영상을 분석하였다. 재난관측에 사용 가능한 대표적인 탑재체의 종류는 극궤도 지구관측 위성에서 광학과 SAR로 구분할 수 있다. 각 기본 특성에 따라 제공되는 정보의 종류가 분류되며 광학 센서는 태양복사 및 지구복사에너지 파장 영역 중 가시광선-근적외선-단파적외선-열적외선 파장대 영역의 분광 정보를 제공할 수 있는 다중 밴드들로 구성된다. 지표의 특정 대상이나 물질을 탐지하고 변화를 감지·분석하는데 유용하여 홍수, 태풍, 지진 등 자연 및 사회 재난·재해 관측에 유용하게 이용된다. SAR 센서는 장파장의 전자기파를 방출한 후 돌아오는 신호를 활용하여 대상에 대한 정보를 획득한다. 대기의 효과 및 요소를 투과하는 주파수 대역별 장파장 밴드 정보를 활용하여 고해상도의 대상 표면, 위치, 형태 등의 정보를 측량 및 관측하므로 중·광역 지역에 제약 없이 영상정보를 획득할 수 있어 산사태, 홍수, 지진, 등의 재난 모니터링에 유용하다. 이러한 다종 위성별 센서들의 특징(공간 해상도, 파장대별 밴드 특성, 관측폭, 재방문 주기 등)들을 분석하여 재난유형별로 가용한 무료/상용 지구관측위성을 분류한 결과 태풍에는 광역관측, 정지궤도 위성, 홍수에는 광학 및 SAR 고해상도 위성, 가뭄은 광역관측, 다분광 광학 위성 그리고 산불에는 정지궤도, 광학, SAR 위성이 적합함을 알 수 있다.

  • PDF

Estimation of Spatial Evapotranspiration Using satellite images and SEBAL Model (위성영상과 SEBAL 모형을 이용한 공간증발산량 산정 연구)

  • Ha, Rim;Shin, Hyung-Jin;Lee, Mi-Seon;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.233-242
    • /
    • 2010
  • SEBAL (Surface Energy Balance Algorithm for Land) developed by Bastiaanssen (1995) is an image-processing model comprisedof twenty-five sub models that calculates spatial evapotranspiration (ET) and other energy exchanges at the surface. SEBAL uses image data from Landsat or other satellites measuring thermal infrared radiation, visible and near infrared. In this study, the model was applied to Gyeongancheon watershed, the main tributary of Han river Basin. ET was computed on apixel-by-pixel basis from an energy balance using 4 years (2001-2004) Landsat and MODIS images. The scale effect between Landsat (30 m) and MODIS (1 km) was evaluated. The results both from Landsat and MODIS were compared with FAO Penman-Monteith ET. The absolute errors between satellite ETs and Penman-Monteith ET were within 12%. The spatial and temporal characteristics of ET distribution within the watershed were also analyzed.

Analysis of Spatial Correlation between Surface Temperature and Absorbed Solar Radiation Using Drone - Focusing on Cool Roof Performance - (드론을 활용한 지표온도와 흡수일사 간 공간적 상관관계 분석 - 쿨루프 효과 분석을 중심으로 -)

  • Cho, Young-Il;Yoon, Donghyeon;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1607-1622
    • /
    • 2022
  • The purpose of this study is to determine the actual performance of cool roof in preventing absorbed solar radiation. The spatial correlation between surface temperature and absorbed solar radiation is the method by which the performance of a cool roof can be understood and evaluated. The research area of this study is the vicinity of Jangyu Mugye-dong, Gimhae-si, Gyeongsangnam-do, where an actual cool roof is applied. FLIR Vue Pro R thermal infrared sensor, Micasense Red-Edge multi-spectral sensor and DJI H20T visible spectral sensor was used for aerial photography, with attached to the drone DJI Matrice 300 RTK. To perform the spatial correlation analysis, thermal infrared orthomosaics, absorbed solar radiation distribution maps were constructed, and land cover features of roof were extracted based on the drone aerial photographs. The temporal scope of this research ranged over 9 points of time at intervals of about 1 hour and 30 minutes from 7:15 to 19:15 on July 27, 2021. The correlation coefficient values of 0.550 for the normal roof and 0.387 for the cool roof were obtained on a daily average basis. However, at 11:30 and 13:00, when the Solar altitude was high on the date of analysis, the difference in correlation coefficient values between the normal roof and the cool roof was 0.022, 0.024, showing similar correlations. In other time series, the values of the correlation coefficient of the normal roof are about 0.1 higher than that of the cool roof. This study assessed and evaluated the potential of an actual cool roof to prevent solar radiation heating a rooftop through correlation comparison with a normal roof, which serves as a control group, by using high-resolution drone images. The results of this research can be used as reference data when local governments or communities seek to adopt strategies to eliminate the phenomenon of urban heat islands.

Tropospheric Ozone over the Seoul Metropolitan Area Derived from Satellite Observations (MODIS) and Numerical Simulation (위성관측(MODIS)에서 유도된 수도권 지역의 대류권 오존 및 수치실험)

  • Yoo Jung-Moon;Park Yoo-Min;Lee Suk-Jo
    • Journal of the Korean earth science society
    • /
    • v.26 no.3
    • /
    • pp.283-296
    • /
    • 2005
  • The effect of ozone and surface temperature on the ozone band at $9.7{\mu}m$ has been investigated from radiative transfer theory together with observations in order to derive empirical methods for remotely sensing ground-ozone concentration. Simultaneous observations of satellite (MODIS Aqua; ECT 13:30) and ground-ozone at 79 stations have been used over the Seoul Metropolitan Area (SMA; 125.7-127.2 E, 37.2-37.7 N) during four ozone-warning days in the year 2003. Cloud effect on the band in the methods was filtered out based on synoptic observations. Upwelling radiance values at $9.6{\mu}m$ which have been estimated at the given ozone concentration of 327-391 DU depend on surface temperature (Ts) showing $5.52\~5.78Wm^{-2}sr^{-1}\;at\;Ts = 290 K,\;and\;9.00\~9.57Wm^{-2}sr^{-1}$ Ts = 325K. Thus, the partitioned contributions of ozone and temperature to intensity of ozone absorption band are $0.26Wm^{-1}sr^{-1}/64\;DU\;and\;0.31 Wm^{-2}sr^{-1}/35K$, respectively. Here the intensity which has been used to remotely detect ground-ozone concentration from infrared satellite measurement is defined as the difference in brightness temperature between $11{\mu} m\;and\;9.7{\mu}m (i.e.,\; T_{11-9.7})$. The methods in this study have been applied to estimate ground-ozone from MODIS data in cases that there are significant correlations between the band intensity and ground-ozone. The values of estimated ozone significantly correlate (0.49-0.63) with ground observations at a significance level of $1\%$. For the improved methods, further study may be required to use tropospheric ozone rather than ground-ozone, considering the variation stratospheric ozone.

Evaluating the Land Surface Characterization of High-Resolution Middle-Infrared Data for Day and Night Time (고해상도 중적외선 영상자료의 주야간 지표면 식별 특성 평가)

  • Baek, Seung-Gyun;Jang, Dong-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.2
    • /
    • pp.113-125
    • /
    • 2012
  • This research is aimed at evaluating the land surface characterization of KOMPSAT-3A middle infrared (MIR) data. Airborne Hyperspectral Scanner (AHS) data, which has MIR bands with high spatial resolution, were used to assess land surface temperature (LST) retrieval and classification accuracy of MIR bands. Firstly, LST values for daytime and nighttime, which were calculated with AHS thermal infrared (TIR) bands, were compared to digital number of AHS MIR bands. The determination coefficient of AHS band 68 (center wavelength $4.64{\mu}m$) was over 0.74, and was higher than other MIR bands. Secondly, The land cover maps were generated by unsupervised classification methods using the AHS MIR bands. Each class of land cover maps for daytime, such as water, trees, green grass, roads, roofs, was distinguished well. But some classes of land cover maps for nighttime, such as trees versus green grass, roads versus roofs, were not separated. The image classification using the difference images between daytime AHS MIR bands and nighttime AHS MIR bands were conducted to enhance the discrimination ability of land surface for AHS MIR imagery. The classification accuracy of the land cover map for zone 1 and zone 2 was 67.5%, 64.3%, respectively. It was improved by 10% compared to land cover map of daytime AHS MIR bands and night AHS MIR bands. Consequently, new algorithm based on land surface characteristics is required for temperature retrieval of high resolution MIR imagery, and the difference images between daytime and nighttime was considered to enhance the ability of land surface characterization using high resolution MIR data.

The Analysis of Regional Scale Topographic Effect Using MM5-A2C Coupling Modeling (국지규모 지형영향을 고려하기 위한 MM5-A2C 결합 모델링 특성 분석)

  • Choi, Hyun-Jeong;Lee, Soon-Hwan;Kim, Hak-Sung
    • Journal of the Korean earth science society
    • /
    • v.36 no.3
    • /
    • pp.210-221
    • /
    • 2015
  • The terrain features and surface characteristics are the most important elements not only in meteorological modeling but also in air quality modeling. The diurnal evolution of local climate over complex terrain may be significantly controlled by the ground irregularities. Such topographic features can affect a thermally driven flow, either directly by causing changes in the wind direction or indirectly, by inducing significant variations in the ground temperature. Over a complex terrain, these variations are due to the nonuniform distribution of solar radiation, which is highly determined by the ground geometrical characteristics, i.e. slope and orientation. Therefore, the accuracy of prediction of regional scale circulation is strong associated with the accuracy of land-use and topographic information in meso-scale circulation assessment. The objective of this work is a numerical simulation using MM5-A2C model with the detailed topography and land-use information as the surface boundary conditions of the air flow field in mountain regions. Meteorological conditions estimated by MM5-A2C command a great influence on the dispersion of mountain areas with the reasonable feature of topography where there is an important difference in orographic forcing.