방사성 폐기물의 안전한 처분을 위해서는 암반의 역학적, 열적, 유체 거동 뿐 아니라 암반과 물 사이의 물리 화학적 상호작용을 이해할 필요가 있다. 또한 지질구조, 지하현지응력, 습곡, 열수작용, 마그마의 관입, 판구조 등과 같은 많은 조건을 모델링하고 예측하기 위해서는 암석의 역학적, 수리적 특성을 알아야 한다. 이 연구는 심부 암반에 폐기물 처분과 관련된 암석역학적인 사항들에 대해 연구들에 기초하고 있다. 이 논문은 변하는 온도 상태에서 암반의 역학적 수리적 거동, 암반의 열-수리-역학적 상호작용 해석과 불연속 암석의 거동 특성 등을 포함한다. 역학적 특성은 Interaken 암석역학 시험 시스템으로 측정되었으며, 수리적 특성에는 순간 증압 투수계수 측정 시스템이 사용되었다. 모든 결과에서 암석 특성은 온도 변화에 민감함을 보였다.
This study presents the results on the changes of crucible thermal conductivity and inflow of Ar, and constructed the mathematical model about heat transfer into furnace. As process variables, simulation model was designated thermal conductivity of crucible to $0.5W{\cdot}m^{-1}{\cdot}K^{-1}$, $1W{\cdot}m^{-1}{\cdot}K^{-1}$, $2W{\cdot}m^{-1}{\cdot}K^{-1}$, $4W{\cdot}m^{-1}{\cdot}K^{-1}$, and inflow rate of Ar to 15 L/min, 30 L/min, 60 L/min. Initial condition and boundary condition were set respectively in two terms of process. Each initial conditions were set up by the preceding simulation of heat and fluid flow. The primary goal is the application of unidirectional growth of Si ingot using the result. In the result of the change of heat conductivity of crucible, the higher thermal conductivity of crucible shows the shorter solidification time and the bigger temperature difference. And the flow patterns are changed with the inflow rate of Ar. Finally, we found that the lower crucible's thermal conductivity, the better crucible is at polycrystalline Si ingot growth. But in case of Ar inflow, it is hard to say about good condition. This data will be evaluated as useful reference used in allied study or process variable control of production facilities.
한국의 2016년 화장률은 82.7%로 1994년의 20.5%보다 4배나 높았다. 화장률이 점차 증가함에 따라 화장시설이 부족해지면서 화장률이 높아질수록 화장시설의 증설이 요구되고 있으며, 또한 화장로의 장기간 작동에 따라 많은 양의 연료가 사용되고 있다. 이러한 문제를 해결하기 위해 본 연구에서는 화장로의 열효율 특성을 최적화하고, 증가하는 화장에 대한 요구에 대응하는 화장 시스템을 제안한다. 본 논문의 목적은 전산 유체 역학(computational fluid dynamics, CFD)을 사용하여 시뮬레이션을 수행함으로써 열전달 계수를 포함한 열흐름 특성을 조사하는 것이다. CFD 모델은 화장시설에 대한 현장 실험으로 검증되었다. 시뮬레이션 결과, 주 연소기에서 연료 소비가 거의 25% 감소하고 체류 시간이 증가했다. 시뮬레이션을 토대로 개량된 연소기, 열교환기, 2차 연소 공기 시스템, 내화 및 단열재를 사용하여 개선된 화장로를 구성하였다. 현장실험 결과 에너지 소비가 약 54.4%로 줄어들었으며 연소 시간이 거의 20 min 단축되었다.
쉘-튜브 열교환기가 나로우주센터 추진기관종합시험장(PSTC)에 설치되었으며, 이 열교환기는 극저온의 헬륨을 고온의 열매유와 열교환하여 약 500 K 까지 가열시키는 역할을 한다. 열교환기에서 토출되는 헬륨의 온도가 설계보다 100 K 낮게 나옴에 따라, 성능저하의 원인으로 열매유의 격막효과가 지목되었다. CFD 해석을 통해 격막효과의 유무를 확인하였으며, 격막효과에 의한 열교환기 성능저하는 미미한 것으로 판단되었다. 추가적으로 열교환기의 성능을 증가시키기 위하여 열매유 교체에 따른 열교환기 성능 변화를 알아보았다. 열매유를 사용하는 열교환기의 성능향상을 위해서는 500 K 부근에서 점성이 낮아야 하고, 열전도도가 높아야 한다는 것을 확인할 수 있었다. 추진기관종합시험장에서 운용된 극저온 헬륨과 고온 열매유의 열교환 시스템의 시험 결과를 본 논문에서 확인할 수 있다.
Surface texturing is widely applied to friction surfaces of various machine elements. Most of the theoretical studies have focused on isothermal (ISO) analyses which consider constant lubricant viscosity. However, there have been limited studies on the effect of oil temperature increase owing to viscous shear. Following the first part of the present study that investigated the effects of film-temperature boundary condition (FTBC) and groove number on the thermohydrodynamic (THD) lubrication characteristics of a surface-textured parallel thrust bearing with multiple rectangular grooves, this study focuses on the effect of groove depths. Current study numerically analyzes the continuity, Navier-Stokes, and energy equations with temperature-viscosity-density relations using a commercial computational fluid dynamics (CFD) software, FLUENT. The results of variation in temperature, velocity, and pressure distributions as well as load-carrying capacity (LCC) and friction force indicate that groove depth and FTBC significantly influence the temperature distribution and pressure generation. The LCC is maximum near the groove depth at which the vortex starts, smaller than the ISO result. For intense grooves, the LCC of THD may be larger than that from ISO. The frictional force decreases as the groove becomes deeper, and decreases more significantly in the case of THD. The study shows that groove depth significantly influences the THD lubrication characteristics of surface-textured parallel thrust bearings.
마찰교반용접(Friction Stir Welding) 기술은 금속 소재를 대상으로 하는 용접기술 중의 하나로 용접대상이 되는 소재와 고속으로 회전하는 용접툴 사이의 마찰로 인한 열을 활용하여 소재의 융점 이하 온도에서 접합하는 기술이다. 이번 연구에서는 마찰교반용접을 진행할 때, 용접 대상물의 내부 온도 변화를 분석하기 위한 방법으로 수치해석기법을 사용하였다. 용접소재로는 마그네슘 합금인 AZ31을 고려하였으며, 용접현상을 멜팅풀(melting-pool)이 생성되는 유동특성으로 간주하고 유동해석을 수행하기 위해 유동특성 수치해석 툴인 FLUENT를 이용하였다. 용접과정의 유동해석을 진행하기 위해 용접소재는 고점도 뉴턴 유체로 가정하였고, 용접툴과 용접대상 소재의 경계면은 마찰 및 미끄러짐이 동시에 발생하는 조건으로 경계조건을 선정하였다. 그리고 용접툴의 회전속도 및 용접속도를 변수로 하여 다양한 해석을 진행하였다. 해석 결과로부터 용접툴의 회전속도가 높을수록, 용접속도가 느릴수록 소재 내 최고온도가 증가함을 확인할 수 있었으며, 그 중 용접툴의 회전속도 차이가 온도 변화에 더 큰 영향을 보임을 확인하였다.
In this study, numerical analyses that considered the dynamic interaction effects between the flow and a turbine were carried out to investigate the power output performance of an H-type Darrieus turbine rotor, which is one of the representative lifting-type vertical-axis tidal-current turbines. For this purpose, a commercial CFD code, Star-CCM+, was utilized for an example three-bladed turbine with a rotor diameter of 3.5 m, a solidity of 0.13, and the blade shape of an NACA0020 airfoil, and the optimal tip speed ratio (TSR) and corresponding maximum power coefficient were evaluated through exhaustive simulations with different sets of flow speed and external torque conditions. The optimal TSR and maximum power coefficient were found to be approximately 1.84 and 48%, respectively. The torque and angular velocity pulsations were also investigated, and it was found that the pulsation ratios for the torque and angular velocity were gradually increased and decreased with an increase in TSR, respectively.
CFD (computational fluid dynamics) analyses that considered the dynamic interaction effects between the flow and a turbine were performed to evaluate the power output characteristics of two representative vertical-axis tidal-current turbines: an H-type Darrieus turbine and Gorlov helical turbine (GHT). For this purpose, a commercial CFD code, Star-CCM+, was utilized, and the power output characteristic were investigated in relation to the scale ratio using the relation between the Reynolds number and the lift-to-drag ratio. It was found that the power coefficients were significantly reduced when the scaled model turbine was used, especially when the Reynolds number was lower than $10^5$. The power output characteristics of GHT in relation to the twisting angle were also investigated using a three-dimensional CFD analysis, and it was found that the power coefficient was maximized for the case of a Darrieus turbine, i.e., a twisting angle of $0^{\circ}$, and the torque pulsation ratio was minimized when the blade covered $360^{\circ}$ for the case of a turbine with a twisting angle of $120^{\circ}$.
코의 3 대 생리학적 기능은 공기조화, 불순물과 공해물질의 제거, 그리고 후각 기능이다. 비강 내공기유동장의 특성에 대한 이해는 코 호흡의 생리학적 병리학적 양상을 이해하는 데 있어서 필수적이다. 정상 및 비정상 비강 내 공기유동에 대한 경험을 토대로 3 개의 하비갑개 수술 후 모델을 제작하여 PIV 실험과 수치해석을 통하여 유동을 해석하였다: (1) 하비갑개의 앞 부분만 절제한 I1 모델 (1) 하비갑개의 아래 부분만 절제한 I2 모델 (1) 하비갑개의 거의 전 부분을 절제한 I3 모델. 정밀한 CT 데이터와 이비인후과 전문의와의 긴밀한 협동 연구로 인해 해부학적으로 정확한 물리적 및 수치 모델을 제작할 수 있었으며 수술 방법에 따른 유동장의 차이에 대해 분석하였다.
Communications for Statistical Applications and Methods
/
제15권1호
/
pp.125-136
/
2008
많은 실제적인 공학 설계문제에 있어서, 목적함수의 형태는 설계변수들에 의하여 정확하게 주어지지 않는다. 이러한 환경 하에서, 구조해석, 유체 역학 해석, 열역학 분석과 같은 등과 같은 문제에서 설계변수들의 값이 주어졌을 때 목적함수들의 값은 실제 실험이나 계산상의 실험을 통하여 얻어지게 된다. 일반적으로, 이러한 실험들은 많은 비용이 든다. 이런 경우에는 실험의 횟수를 가능한 적게 하기위하여, 목적함수의 형태를 예측하는 것과 병행하여 최적화를 수행하게 된다. 반응표면분석(Response Surface Methodology, RSM)은 이러한 접근 방법에서 잘 알려져 있다. 본 논문에서는 목적함수의 예측을 위하여 서포트 벡터 기계(Support Vector Machines, SVM)의 방법을 적용할 것이다. 이러한 접근에서 가장 중요한 과제들 중의 하나는 가능한 실험의 횟수를 적게 하기 위하여 적절하게 표본자료들을 배치하는 것이다. 이러한 목적에 서포트 벡터의 정보들이 효과적으로 사용되어짐을 보이고 제안한 방법의 효율성은 공학 설계문제에서 잘 알려진 수치 예제를 통하여 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.