• Title/Summary/Keyword: 열유속 측정

Search Result 188, Processing Time 0.038 seconds

Boiling Heat Transfer Characteristics of Deionized Water in Microchannel (마이크로 채널에서 물의 비등 열전달 특성)

  • Lim, Tae-Woo;You, Sam-Sang;Choi, Hyeung-Sik;Kim, Dong-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.750-756
    • /
    • 2011
  • An experimental study was carried out to measure the heat transfer coefficient in flow boiling to deionized water in a microchannel having a hydraulic diameter of $500{\mu}m$. Tests were performed in the ranges of heat fluxes from 100 to 400 kW/$m^2$, vapor qualities from 0 to 0.2 and mass fluxes of 200, 400 and 600 kg/$m^2s$. From the experimental results, it is found that the measured heat transfer coefficients is independent of mass flux and quality, and is somewhat dependent of heat flux. Measured data of heat transfer are compared to a few available correlations proposed for macroscale. The previous correlations for macroscale overpredicted the flow boiling heat transfer coefficient for the test conditions considered in this work.

A Study on the Improvement of Spatial Resolution with Miniaturization of Plate Thermometer (판형 열유속계의 소형화에 따른 공간 해상도 개선에 관한 연구)

  • Yun, Hong-Seok;Han, Ho-Sik;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.39-46
    • /
    • 2019
  • This study assessed the measurement errors and improvement of the spatial resolution through miniaturization of the plate thermometer used to measure the heat flux in a fire environment. As a result, the heat loss to the side of plate thermometer was found to have a significant influence on the measurement error through analysis of the measurement values according to the thickness and density change to the insulation installed on the back side of the plate. Based on the existing 10 cm square shape, it was also confirmed that the 3 cm size plate thermometer could measure the heat flux with satisfactory accuracy through miniaturization. These results are expected to be useful for accurate measurements of the heat flux at local locations in a fire environment.

Development of 2-ton thrust-level sub-scale calorimeter (추력 2톤급 축소형 칼로리미터 개발)

  • Cho, Won-Kook;Ryu, Chul-Sung;Chung, Yong-Hyun;Lee, Kwang-Jin;Kim, Seung-Han;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.107-113
    • /
    • 2005
  • A calorimeter of 2-ton thrust level rocket engine chamber has been developed to measure the wall heat flux. The liner of the chamber is made of copper-chromium alloy to maximize the heat transfer performance and structural strength. 1-D design code based on empirical correlations has been used for the prediction of the global thermal characteristics while 3-D CFD has been applied for the verification of local cooling performance. The predicted average wall heat flux at the throat is 43 $MW/m^{2}$ for the combustion chamber pressure of 53 bar. The chamber structure is confirmed to be safe at the pressure of 150 bar through 2-D stress analysis and measurement of the strain of the test species. Finally, the test of pressurizing the calorimeter chamber has been performed with water at the pressure of 150 bar in room temperature environment. No thermal damage has been detected after the hot-fire test in the test nozzle of same cooling performance with the developed calorimeter though the measured throat heat flux is higher than the design value by 10%.

Lumped System Analysis on the Lunar Surface Temperature Using the Bottom Conductive Heat Flux Model (달 표면온도 예측을 위한 집중계 해석방법과 하부 열유속 모델의 적용)

  • Kim, Taig Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.66-74
    • /
    • 2019
  • Instead of securing thermophysical properties throughout the entire lunar surface, a theoretical method to predict the lunar surface temperature accurately using improved Lumped System Model (LSM) was developed. Based on the recently published research, thermal mass per unit area at the top regolith layer is assumed uniform. The function of bottom conductive heat flux was introduced under the theoretical background. The LSM temperature prediction agrees well with the DLRE measurement except for dusk, dawn and high latitude region where the solar irradiation is weak. The relative large temperature discrepancy in such region is caused by the limit of the bottom conductive heat flux model. The surface temperature map of the moon generated by the LSM method is similar to the DLRE measurement except for the anomalous temperature zones where surface topography and thermophysical properties appear in highly uneven.

Experimental Study on Heat Flux Partitioning in Subcooled Nucleate Boiling on Vertical Wall (수직 벽면에서 과냉 핵비등 시 열유속 분배에 관한 실험적 연구)

  • Song, Junkyu;Park, Junseok;Jung, Satbyoul;Kim, Hyungdae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.465-474
    • /
    • 2014
  • To validate the accuracy of the boiling heat flux partitioning model, an experiment was performed to investigate how the wall heat flux is divided into the three heat transfer modes of evaporation, quenching, and single-phase convection during subcooled nucleate boiling on a vertical wall. For the experimental partitioning of the wall heat flux, the wall heat flux and liquid-vapor distributions were simultaneously obtained using synchronized infrared thermometry and the total reflection technique. Boiling experiments of water with subcooling of $10^{\circ}C$ were conducted under atmospheric pressure, and the results obtained at the wall superheat of $12^{\circ}C$ and average heat flux of $283kW/m^2$were analyzed. There was a large difference in the heat flux partitioning results between the experiment and correlation, and the bubble departure diameter and bubble influence factor, which account for a portion of the surrounding superheated liquid layer detached by the departure of a bubble, were found to be important fundamental boiling parameters.

Heat Dissipation of Cylinder Head of Reciprocating Internal Combustion Engine (왕복동 내연기관 실린더 헤등의 방열에 관한 연구)

  • Kim, K. C.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.71-78
    • /
    • 1984
  • 본 논문은 왕복동 내연기관의 방열에 관한 연구의 하나로서 디이젤 기관 실린더 헤드와 흡 배기 밸브의 온도 분포와 열유속의 분포를 구한 것이다. 방열 해석은 기관의 정상 작동된 다음의 실린 더 헤드의 열부하가 일정하다고 생각하여 실린더 헤드의 밸드 시이트 양단의 온도와 연소 가스 배출 온도, 흡기 및 냉각수 온도를 측정하고 온도분포 및 열유속을 유한요소법을 적용하여 구하 였다. 본 연구의 결과 실린더 헤드 및 밸브의 과부하는 밸브의 경우에는 밸브 헤드 중심과 밸브 헤드 중심 부근에서 일어나며, 실린더 헤드의 경우에는 헤드 중심부 표면에서 발생하였다. 흡 배 기 밸브 및 물재킷부의 온도 분포 및 열유속의 분포를 주어진 냉각수 온도 조건에 대하여 구한 후 이들을 비교 검토 하였다.

Experimental Study of Film Cooling in Liquid Rocket Engine(I) (액체로켓엔진의 막냉각에 관한 실험적 연구(I))

  • Choi, Young-Hwan;Jeong, Hae-Seung;Kim, Yoo;Kim, Sun-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.71-75
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of film cooling in the lab-scale dump-cooled liquid rocket engine using LOX and kerosene as propellants. The nozzle of the rocket engine was film cooled with water as coolant. A special film cooling adapter was fabricated to introduce the film-coolant into the thrust chamber. The flow rates of film coolant was approximately 15~19 percent of the total propellant. The nozzle heat flux was determined from the measured temperature rise and flow rate of the coolant(water). Large reductions in the nozzle heat flux was resulted when film cooling adapter located directly upstream of the nozzle.

An Experimental Study of the Pool-Boiling CHF on Downward-Facing Plates (하향 평판에서의 풀비등 임계열유속에 관한 실험적 연구)

  • Yang, Soo-Hyung;Baek, Won-Pil;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.493-501
    • /
    • 1994
  • An experimental study has been peformed on the pool-boiling critical heat flux (CHF) phenomenon on downward -facing plates. The CHF for inclinations of -90$^{\circ}$(horizontally downward position), -88$^{\circ}$, -86$^{\circ}$, -84$^{\circ}$, -60$^{\circ}$ and -40$^{\circ}$ were measured using plate-type test sections of 20mm 200mm and 25mm 200mm in a pool of saturated water under atmospheric pressure. The measured CHF was lower for the wider test section and decreased as its orientation approached to the horizontally downward position. The lower CHF can be attributable to the increased difficulty for the bubbles in escaping from the heater surface. When compared with the previous works, the overall trends were similar; however, a transition angle, at which the decrease rate in the CHF was changed, was observed in the vicinity of -80$^{\circ}$.

  • PDF

Influence of Radiant Heat Flux on Combustion Properties of Flame Retardant Cable (케이블의 난연성능에 따른 복사 열유속이 연소물성에 미치는 영향)

  • Mun, Sun-Yeo;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.29-36
    • /
    • 2019
  • The combustion properties required for fire simulations of multi-layer, multi-component flame retardant cables were measured using a cone calorimeter. The CO and soot yields combustion efficiencies of the flame retardant cables were investigated. TFR-8 (flame retardant PCV and XLPE added), TFR-CVV-SB (flame retardant PCV and general PVC), and VCTF, which are excellent in the flame retardancy of cables, were considered. As the main result, the CO yield (yCO) of the TFR-8 and TFR-CVV-SB flame retardant cables increased by 23% and 16%, respectively, with increasing incident radiation heat flux from 25 kW/㎡ to 50 kW/㎡. On the other hand, the CO yield of VCTF was not influenced significantly by the changes in radiant heat flux. Finally, the soot yield and combustion efficiency increased as the sheath material (flame retardant performance) was strengthened. Therefore, in a fire environment where various heat fluxes coexist, attention should be paid to the top of the application of the combustion property of the flame retardant cable.