DOI QR코드

DOI QR Code

Boiling Heat Transfer Characteristics of Deionized Water in Microchannel

마이크로 채널에서 물의 비등 열전달 특성

  • 임태우 (한국해양대학교 기관공학부) ;
  • 유삼상 (한국해양대학교 기계.에너지시스템공학부) ;
  • 최형식 (한국해양대학교 기계.에너지시스템공학부) ;
  • 김동혁 (한국해양대학교 기계.에너지시스템공학부)
  • Received : 2011.06.15
  • Accepted : 2011.08.10
  • Published : 2011.09.30

Abstract

An experimental study was carried out to measure the heat transfer coefficient in flow boiling to deionized water in a microchannel having a hydraulic diameter of $500{\mu}m$. Tests were performed in the ranges of heat fluxes from 100 to 400 kW/$m^2$, vapor qualities from 0 to 0.2 and mass fluxes of 200, 400 and 600 kg/$m^2s$. From the experimental results, it is found that the measured heat transfer coefficients is independent of mass flux and quality, and is somewhat dependent of heat flux. Measured data of heat transfer are compared to a few available correlations proposed for macroscale. The previous correlations for macroscale overpredicted the flow boiling heat transfer coefficient for the test conditions considered in this work.

본 연구에서는 $500{\mu}m$의 수력 직경을 가지는 마이크로 채널에서 물에 대한 유동 비등 열전달계수를 측정하기 위한 실험적 연구를 수행하였다. 실험 영역은 열유속이 100~400 kW/$m^2$이고, 증기 건도가 0~0.2 그리고 질량유속이 200, 400 그리고 600 kg/$m^2s$의 범위에서 이루어졌다. 실험결과 측정된 열전달계수는 질량유속과 증기건도에는 의존하지 않으며, 열유속에는 다소 의존하는 것으로 나타났다. 또한 측정된 열전달계수는 매크로스케일에서 제안된 몇몇 상관식들과 비교하였으며, 기존의 상관식들은 본 연구의 실험 조건에서 얻어진 유동 비등 열전달계수를 높게 예측하였다.

Keywords

References

  1. J. Dirker, W. Liu, D. Van Wyk, J.P. Meyer and A.G. Malan, "Embedded solid state heat extraction in integrated power electronic modules", IEEE Trans. Power Electron. vol. 20, no. 3, pp. 694-703, 2005. https://doi.org/10.1109/TPEL.2005.846532
  2. E.W. Kreutz, N. Pirch, T. Ebert, R. Wester, B. Ollier, P. Loosen and R. Poprawe, "Simulation of micro-channel heat sinks for optoelectronic", Microsyst. Microelectron. J. vol. 31 pp. 787- 90, 2000. https://doi.org/10.1016/S0026-2692(00)00060-4
  3. A.G. Fedorov and R. Viskanta, "Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging", Int. J. Heat Mass Transfer vol. 43 pp. 399-15, 2000. https://doi.org/10.1016/S0017-9310(99)00151-9
  4. W. Qu and I. Mudawar, "Analysis of three-dimensional heat transfer in microchannel heat sinks", Int. J. Heat Mass Transfer vol. 45 pp. 3973-985, 2002. https://doi.org/10.1016/S0017-9310(02)00101-1
  5. C.Y. Zhao and T.J. Lu, "Analysis of microchannel heat sinks for electronics cooling", Int. J. Heat Mass Transfer vol. 45 pp. 4857-869, 2002. https://doi.org/10.1016/S0017-9310(02)00180-1
  6. C.Y. Soong and S.H. Wang, "Theoretical analysis of electrokinetic flow and heat transfer in a microchannel under asymmetric boundary conditions", Colloid Interface Sci. vol. 265 pp. 202-13, 2003. https://doi.org/10.1016/S0021-9797(03)00513-7
  7. X.F. Peng and B.-X. Wang, "Forced convection and flow boiling heat transfer for liquid flowing through microchannels", Int. J. Heat Mass Transfer vol. 36 no. 14, pp. 3421- 3427, 1993. https://doi.org/10.1016/0017-9310(93)90160-8
  8. S.G. Kandlikar, "Fundamental issues related to flow boiling in minichannels and microchannels", Exp. Therm. Fluid Sci. vol. 26, pp. 389-407, 2002. https://doi.org/10.1016/S0894-1777(02)00150-4
  9. M.W. Wambsganss et al., "Boiling heat transfer in a horizontal small-diameter tube", J. Heat Transfer Trans. ASME vol. 115 no. 4, pp. 963-972, 1993. https://doi.org/10.1115/1.2911393
  10. Thome, J.R., "Boiling in microchannels: a review of experiment and theory". Int. J. Heat and Fluid Flow vol. 25, pp. 128-139, 2004. https://doi.org/10.1016/j.ijheatfluidflow.2003.11.005
  11. G. Hetsroni et al., "Fluid flow in microchannels", Int. J. Heat Mass Transfer vol. 48 no. 10, pp. 982-1998, 2005.
  12. T.N. Tran and M.W. Wambsganss, D.M. France, "Small circular- and rectangular channel boiling with two refrigerants", Int. J. Multiphase Flow vol. 22, no. 3, pp. 485-498, 1996. https://doi.org/10.1016/0301-9322(96)00002-X
  13. Liu, D. and Garimella, S.V., "Flow boiling in a microchannel heat sink". In: Proceedings of ASME International Mechanical Engineering Congress and Exposition, Orlando, FL, November pp. 5-11, 2005.
  14. B.X. Wang and X.F. Peng, "Experimental investigation on liquid forced convection heat transfer through microchannels", International Journal of Heat and Mass Transfer vol. 37 (suppl.1) pp. 73-82, 1994. https://doi.org/10.1016/0017-9310(94)90011-6
  15. X.F. Peng, G.P. Peterson and B.X. "Wang, Frictional flow characteristics of water flowing through rectangular micro-channels, Experimental Heat Transfer vol. 7 pp. 249-264, 1994. https://doi.org/10.1080/08916159408946484
  16. X.F. Peng, G.P. Peterson and B.X. Wang, "Heat transfer characteristics of water flowing through micro-channels", Experimental Heat Transfer vol. 7 pp. 265-283, 1994. https://doi.org/10.1080/08916159408946485
  17. X.F. Peng and G.P. Peterson, "Forced convection heat transfer of single-phase binary mixtures through microchannels", Experimental Thermal and Fluid Science vol. 12 pp. 98- 112, 1996. https://doi.org/10.1016/0894-1777(95)00079-8
  18. P.S. Lee, S.V. Garimella and D. Liu, "Investigation of heat transfer in rectangular microchannels", International Journal of Heat and Mass Transfer vol. 48 pp. 1688-1704, 2005. https://doi.org/10.1016/j.ijheatmasstransfer.2004.11.019
  19. Y. Mishan, A. Mosyak, E. Pogrebnyak and G. Hetsroni, "Effect of developing flow and thermal regime on momentum and heat transfer in micro-scale heat sink", International Journal of Heat and Mass Transfer vol. 50, pp. 3100-3114, 2007. https://doi.org/10.1016/j.ijheatmasstransfer.2006.12.003
  20. W. Qu andI. Mudawar, "Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink", Int. J. Heat Mass Transfer vol. 45, pp. 2549-2565, 2002. https://doi.org/10.1016/S0017-9310(01)00337-4
  21. Liu, D., Lee, P. -S., Garimella and S. V., "Prediction of the onset of nucleate boiling in microchannel flow". International Journal of Heat and Mass Transfer vol. 48, pp. 5134- 5149, 2005. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.021
  22. Wang, G., Cheng, P., and Wu, H., "Unstable and stable flow boiling in parallel microchannels and in a single microchannel", International Journal of Heat and Mass Transfer vol. 50, pp. 4297-4310, 2007. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.033
  23. S.G. Kandlikar and W.J. Grande, "Evolution of microchannel flow passages thermo-hydraulic performance and fabrication technology", Heat Transfer Eng. vol. 24, no. 1, pp. 3-17, 2003. https://doi.org/10.1080/01457630304040
  24. A.E. Bergles, "Boiling and evaporation in small diameter channels", Heat Transfer Engineering Microchannels-Short History and Bright Future, vol. 24, no. 1, pp. 18-40, 2003.

Cited by

  1. CFD Analysis on the Channel Shapes of Parallel Micro-Channels vol.25, pp.5, 2013, https://doi.org/10.13000/JFMSE.2013.25.5.1102
  2. Prediction methods for two-phase flow frictional pressure drop of FC-72 in parallel micro-channels vol.38, pp.7, 2014, https://doi.org/10.5916/jkosme.2014.38.7.821
  3. Boiling heat transfer characteristics of FC-72 in parallel micro-channels vol.38, pp.9, 2014, https://doi.org/10.5916/jkosme.2014.38.9.1032
  4. Study on Characteristics of Flow Boiling Heat Transfer in Multi channels vol.27, pp.5, 2015, https://doi.org/10.13000/JFMSE.2015.27.5.1310
  5. Heat transfer characteristic and flow pattern investigation in micro-channels during two-phase flow boiling vol.39, pp.7, 2015, https://doi.org/10.5916/jkosme.2015.39.7.696
  6. 마이크로채널에서의 비등열전달 현상에 관한 연구 vol.41, pp.9, 2011, https://doi.org/10.3795/ksme-b.2017.41.9.605