• Title/Summary/Keyword: 열유동해석

Search Result 273, Processing Time 0.023 seconds

충돌제트에서의 유량공급 채널 및 제트 홀 배열에 따른 열유동 특성 수치해석 (Numerical Analysis on the Effects of Supply Channel and Jet Hole Arrangement on Heat Flow Characteristics of Impingement Jet)

  • 황병조;정희윤;주원구;조형희
    • 한국추진공학회지
    • /
    • 제20권4호
    • /
    • pp.77-86
    • /
    • 2016
  • 유량공급 채널 및 제트 홀 배열이 충돌제트의 열유동 특성에 미치는 영향을 분석하기 위하여 수치해석을 수행하였다. 유량공급 채널 내에 있는 제트 홀은 전연면 채널의 중심축으로부터 일열 또는 엇갈림 배열로 되어 있다. ICEMCFD 소프트웨어를 사용하여 해석영역을 정렬 격자로 모델링하였으며, 수치해석은 CFD 코드인 CFX 15.0으로 수행하였다. 본 해석 결과의 타당성은 타 연구자들의 실험 및 수치해석 결과와의 비교를 통해 검증하였다. 일열 또는 엇갈림 배열인 경우에 충돌 제트의 질량유량 및 충돌면에서의 Nusselt 수 분포에 대해 비교 분석하였다.

바이모달 트램용 리튬폴리머전지팩에 대한 열유동해석

  • 이강원;장세기;조세현;배종민;강환국
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.289-289
    • /
    • 2009
  • The series hybrid propulsion system in bimodal tram consists of CNG engine, generator, inverter, motor and battery as main components. Among them, battery is very important thing to make a hybrid bimodal tram more efficient in driving. Battery pack is composed of 168 LPB(lithium polymer battery) cells, 650Vdc-300A. LPB should be treated with a good consideration in both temperature and overvoltage. This paper had analyzed and investigated the thermal flow and distribution of LPB module(l4 LPB cells) and Pack in simulated environments by commercial thermal analysis tool.

  • PDF

디버터의 열유동 및 열응력 해석 1 (Analysis of Heat Flow and Thermal Stress for Divertors)

  • 이상윤;김홍배
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.238-245
    • /
    • 1999
  • For the optimal design of plasma facing components of a fusion reactor, thorough understanding of thermal behavior of high heat. nux components are required. The purpose of this research is to investigate the characteristics of heat flow and thermal stress in divertors which are exposed to high heat load varing with time and space-Numerical simulations of heat now and thermal stress for three types of diverter are performed using finite volume method and finite element method. Respectly, commercial FLUENT code are used in the heat flow simulation, and maximum surface temperature, temperature distribution and cooling rate are calculated. Commercial ABQUS code are used for calculating temperature distribution. thermal stress, strain and displacement. Through this computer simulation. design data for cooling system and Structural provided.

  • PDF

ATHOS3 코드에 의한 고리1호기 증기발생기 열유동해석 (Thermal-Hydraulic Analysis of Kori Unit-1 Steam Generator Using ATHOS3 Code)

  • 최석기;남호윤;김의광;김형남;장기상;홍성열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.106-111
    • /
    • 2001
  • This paper presents the numerical methodology of ATHOS3 code for thermal hydraulic analysis of Pressurized Water Reactor (PWR) steam generators. Topics include porous media approach, governing equations, physical models and correlations for solid-to-fluid interaction and heat transfer, and numerical solution scheme. The ATHOS3 code is applied to the thermal hydraulic analysis of steam generator in the Korea Kori Unit-1 nuclear power plant and the computed results are presented.

  • PDF

배전용 몰드변압기의 온도특성 파악을 위한 열유동해석 (Thermal Fluid Flow Analysis for Temperature Characterization of Mold Transformer in Distribution Power System)

  • 김지호;이정근;이기식;이욱;이향범
    • 전기학회논문지P
    • /
    • 제62권1호
    • /
    • pp.6-11
    • /
    • 2013
  • In this paper, the temperature characteristics of mold transformer for the distribution power system have been analyzed by using computational fluid dynamics(CFD). The model has been modeled by coil, cores, insulating materials and frames about 3MVA grade mold transformer and analyzed the temperature distribution of the structure with a heat fluid. The fluid, which is incompressible ideal gas, is analyzed as a turbulent flow phenomenon on the assumption that it is natural cooling of transformer cooling system. Through this study, by examining the temperature distribution and hot-spot of the structure field of the mold transformer, cooling design and temperature distribution information, which are demanded for designing are estimated.

핵연료 집합체에서의 열유동 특성에 관한 연구 (A Study on Thermal-hydraulic Characteristics for Nuclear Fuel Rod Bundle)

  • 유성연;정민호;김만웅;최영준;김현군
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.3-8
    • /
    • 2001
  • For the successful design of nuclear reactor, it is very important to investigate thermal-hydraulic characteristics of fuel rod bundle. Fluid flow and heat transfer in the non-circular cross-section of nuclear fuel rod bundle are different from those found in common circular tube. And complex three dimensional flow including secondary and vortex flow, is formed around the bundles. The purpose of this research is to examine how geometries and flow conditions affect heat transfer in fuel rod bundle. Design data for nuclear fuel rod bundle and structure are surveyed, and $3{\times}3$ sub-channel model is adopted in this study. Computational results are compared with the heat transfer data measured by naphthalene sublimation method, and numerical analysis and evaluation are performed at various design conditions and flow conditions.

  • PDF