DOI QR코드

DOI QR Code

Numerical Analysis on the Effects of Supply Channel and Jet Hole Arrangement on Heat Flow Characteristics of Impingement Jet

충돌제트에서의 유량공급 채널 및 제트 홀 배열에 따른 열유동 특성 수치해석

  • Hwang, Byeong Jo (Department of Mechanical Engineering, Yonsei University) ;
  • Chung, Heeyoon (Department of Mechanical Engineering, Yonsei University) ;
  • Joo, Won Gu (Department of Mechanical Engineering, Yonsei University) ;
  • Cho, Hyung Hee (Department of Mechanical Engineering, Yonsei University)
  • Received : 2016.05.30
  • Accepted : 2016.07.11
  • Published : 2016.08.01

Abstract

A numerical analysis is performed to investigate the effect of a supply channel and jet hole arrangement on the heat flow characteristics of impingement jet. The jet holes in a supply channel are composed of a single or staggered array from the center of a leading edge channel. The software ICEMCFD is used to generate the structured grids for calculation domain and a CFD code CFX 15.0 to perform the simulation. The present solutions are validated by comparison with the experimental and numerical ones of others. A comparison of mass flow rates of impingement jets and Nusselt numbers on the impingement surface for the single or staggered arrays is made.

유량공급 채널 및 제트 홀 배열이 충돌제트의 열유동 특성에 미치는 영향을 분석하기 위하여 수치해석을 수행하였다. 유량공급 채널 내에 있는 제트 홀은 전연면 채널의 중심축으로부터 일열 또는 엇갈림 배열로 되어 있다. ICEMCFD 소프트웨어를 사용하여 해석영역을 정렬 격자로 모델링하였으며, 수치해석은 CFD 코드인 CFX 15.0으로 수행하였다. 본 해석 결과의 타당성은 타 연구자들의 실험 및 수치해석 결과와의 비교를 통해 검증하였다. 일열 또는 엇갈림 배열인 경우에 충돌 제트의 질량유량 및 충돌면에서의 Nusselt 수 분포에 대해 비교 분석하였다.

Keywords

References

  1. Amano, R.S. and Sunden, B., Impingement Jet Cooling in Gas Turbines, WIT Press, Southampton, England, U.K., 2014.
  2. Han, J., "Turbine Blade Cooling Studies at Texas A&M University: 1980-2004," Journal of Thermophysics and Heat Transfer, Vol. 20, No. 2, pp. 161-187, 2006. https://doi.org/10.2514/1.15403
  3. Jambunathan, K., Lai, E., Moss, M.A. and Button, B.L., "A Review of Heat Transfer Data for Single Circular Jet Impingement," International Journal of Heat and Mass Transfer, Vol. 13, No. 2, pp. 106-115, 1992.
  4. Ligrani, P.M., Oliveira, M.M. and Blaskovich, T., "Comparison of Heat Transfer Augmentation Techniques," AIAA Journal, Vol. 41, No. 3, pp. 337-362, 2003. https://doi.org/10.2514/2.1964
  5. Taslim, M.E. and Bethka, D., "Experimental and Numerical Impingement Heat Transfer in an Airfoil Leading-Edge Cooling Channel with Cross-Flow," ASME Journal of Turbomachinery, Vol. 131, No. 1, pp. 011021-1-7, 2009. https://doi.org/10.1115/1.2950058
  6. Zhao, Q.Y., Jung, E.Y., Choi, S.M. and Cho, H.H., "Effect of Guide Wall on Jet Impingement Cooling in Blade Leading Edge Channel," Journal of Mechanical Science and Technology, Vol. 30, No. 2, pp. 525-531, 2016. https://doi.org/10.1007/s12206-016-0105-x
  7. Liu, Z. and Feng, Z., "Numerical Simulation on the Effect of Jet Nozzle Position on Impingement Cooling of Gas Turbine Blade Leading Edge," International Journal of Heat and Mass Transfer, Vol. 54, Issue 23-24, pp. 4949-4959, 2011. https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.008
  8. Yang, L., Ren, J., Jiang, H. and Ligrani, P., "Experimental and Numerical Investigation of Unsteady Impingement Cooling within a Blade Leading Edge Passage," International Journal of Heat and Mass Transfer, Vol. 71, pp. 57-68, 2014. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.006
  9. Facchini, B., Maiuolo, F. and Tarchi, L., "Experimental Investigation on the Heat Transfer of a Leading Edge Cooling System: Effects of Jet-to-Jet Spacing and Showerhead Extraction," Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, San Antonio, Texas, USA, GT2013-94759, June, 2013.
  10. Jung, E.Y., Park, C.U., Lee, D.H., Kim, K.M., Woo, T. and Cho, H.H., "Heat Transfer Characteristics of an Angled Array Impinging Jet on a Concave Duct," Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Copenhagen, Denmark, GT2012-69566, June 2012.
  11. Martin, E.L. and Wright, L.M., "Computational Investigation of Jet Impingement on Turbine Blade Leading Edge Cooling with Engine-Like Temperatures," Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Copenhagen, Denmark, GT2012-68811, June 2012.
  12. Zuckerman, N. and Lior, N., "Impingement Heat Transfer : Corrections and Numerical Modeling," ASME Journal of Heat Transfer, Vol. 127, pp. 544-552, May 2005. https://doi.org/10.1115/1.1861921
  13. Hong, S.K., Lee, D.H. and Cho, H.H., "Heat/Mass Transfer Measurement on Concave Surface in Rotating Jet Impingement," Journal of Mechanical Science and Technology, Vol. 22, No. 10, pp. 1952-1958, 2008. https://doi.org/10.1007/s12206-008-0738-5
  14. Zhao, Q.Y., Chung, H., Choi, S.M. and Cho, H.H., "Effect of Guide Wall for Jet Impingement Cooling in Blade Leading Edge Channel," The 6th International Symposium on Fluid Machinery and Fluids Engineering (ISFMFE 2014), Wuhan, China, No. 90149, Oct. 2014.
  15. Taslim, M.E., Bakhtari, K. and Liu, H., "Experimental and Numerical Investigation of Impingement on a Rib-Roughened Leading-Edge Wall," ASME Journal of Turbomachinery, Vol. 125, Issue 4, pp. 682-691, 2003. https://doi.org/10.1115/1.1624848