• Title/Summary/Keyword: 열유동해석

Search Result 273, Processing Time 0.027 seconds

A Study of Non-staggered Grid Approach for Incompressible Heat and Fluid Flow Analysis (비압축성 열유동 해석을 위한 비엇갈림 격자법에 대한 연구)

  • Kim Jongtae;Kim Sang-Baik;Kim Hee-Dong;Maeng Joo-sung
    • Journal of computational fluids engineering
    • /
    • v.7 no.1
    • /
    • pp.10-19
    • /
    • 2002
  • The non-staggered(collocated) grid approach in which all the solution variables are located at the centers of control volumes is very popular for incompressible flow analyses because of its numerical efficiency on the curvilinear or unstructured grids. Rhie and Chow's paper is the first in using non-staggered grid method for SIMPLE algorithm, where pressure weighted interpolation was used to prevent decoupling of pressure and velocity. But it has been known that this non-staggered grid method has stability problems when pressure fields are nonlinear like in natural convection flows. Also Rhie-Chow scheme generates large numerical diffusion near curved walls. The cause of these unwanted problems is too large pressure damping term compared to the magnitude of face velocity. In this study the magnitude of pressure damping term of Rhie-Chow's method is limited to 1∼10% of face velocity to prevent physically unreasonable solutions. The wall pressure extrapolation which is necessary for cell-centered FVM is another source of numerical errors. Some methods are applied in a unstructured FV solver and analyzed in view of numerical accuracy. Here, two natural convection problems are solved to check the effect of the Rhie-Chow's method on numerical stability. And numerical diffusion from Rhie-Chow's method is studied by solving the inviscid flow around a circular cylinder.

Performance and Thermal-Flow Characteristics in a Planar Type Solid oxide Fuel Cell with Single Channel and Multi-Channel (단일채널 및 다채널을 포함한 평판형 고체산화물연료전지의 열유동 해석 및 성능평가)

  • Ahn, Hyo-Jung;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.1033-1041
    • /
    • 2007
  • This paper studied the characteristics of performance and temperature in a unit cell of a planar type SOFC under various conditions by employing computational fluid dynamics (CFD). In order to derive thermal stress distribution and performance characteristics, the 3-D model simulation for a single channel was performed in various conditions which include interconnect materials $(LaCrO_3/AISI430)$, gas flow direction (co-flow/counter-flow) and inlet temperature (923 K/1173 K). From these results of a single channel, the most effective conditions were applied to the unit stack with multi-channel and the temperature distribution is displayed. Considering both thermal stress and performance, the best combination is 923 K inlet temperature, counter-flow and interconnector of stainless steel. As the end results, flow, thermal and current density distributions were found in the model with multi-channel applied to the best combination and were concentrated in the middle of channels than in the edge.

Heat transfer analysis of CFD at the Ultrasonic horn bonding flip chip (플립칩 접합용 초음파 혼의 CFD 열유동 해석)

  • Shim, Hyun-Sik;Rhee, Gwang-Huun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2750-2753
    • /
    • 2008
  • This paper introduce the CFD analysis for predicting the heat transfer at the Ultrasonic horn. Approximately Ultrasonic horn separates two part. One is preheating part and the other is cooling part. Temperature of preheating part rise up by $260^{\circ}C$ that make it possible to attach a chip to a semiconductor. Also there is a piezo material in the cooling part. When piezo work, it generates heat of $100^{\circ}C$. It can stand by $150^{\circ}C$. But the high temperature conducted from the preheating part has a bad affect on the piezo. These situation make it necessary cooling at piezo. Previously except of the piezo, all of them are composed of the SUS440c that has good thermal conductivity. This study shows way that not only cooling the piezo but also cutting off the conduction between preheating part and cooling part by using the Ti and Duralumin that have low thermal conductivity compare with the SUS440c. Conclusion of CFD analysis that the heat coming from the piezo can't be transferred the horn cause of the Ti and Duralumin.

  • PDF

Thermal-flow Analysis of the Cooling System in the Medicated Water Electrolysis Apparatus (냉이온수기 냉각시스템에 관한 열유동 해석)

  • Jeon, Seong-Oh;Lee, Sang-Jun;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.33-38
    • /
    • 2011
  • Medicated water electrolysis apparatus, which electrolyzes water into acidic water and alkaline water, was in the spotlight as becoming known the effect of alkaline water. It is known as good for health as removing active oxygen in the human's body and promoting digestion. But, the customers could not get that desired water temperature because these apparatuses are directly connected with a water pipe. So, the cooling system was developed for controlling the temperature of the alkaline water. One of the typical way is to store water in water tank and control the temperature. But, in this way, storing water can be polluted impurities coming from outside. For protecting this pollution, the cooling system based on indirect heat exchange method through phase change between water and ice was developed. In this study, we have calculated efficiency of the cooling system with phase change by experiment and commercial CFD(Computational Fluid Dynamics) code, ANSYS CFX. To consider the effect of latent heat that is generated by melting ice, we have simulated two phase numerical analyses used enthalpy method and found the temperature, velocity, and ice mass distribution for calculating the efficiency of cooling. From the results of numerical analysis, we have obtained the relationship between the cooling efficiency and each design factor.

Analysis on Characteristics of Thermal Flow for Heating Indoor Space by Air-heating Collector using Solar Heat (태양열 공기가열 집열기에 의한 난방 실내공간의 열유동 특성 해석)

  • Yang, Young-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.271-278
    • /
    • 2022
  • The solar energy has been widely used to reduce the fossil fuel and prevent the environmental pollution. The renewable energy including solar heat tends to spread due to carbon neutrality for main country of the world. Targets of solar collector are usually acquisitions of hot water or hot air. Especially, air-heating collector using solar heat is known as the technology for obtaining hot air. This study aims to investigate of characteristics of thermal flow when the hot air by air-heating collector using solar heat flows inside of indoor space. The thermal flow of heating indoor space was simulated using ANSYS-CFX program and thus the behaviors of hot air in indoor space were evaluated with standard k-𝜀 turbulence model. As the results, as the inlet velocity was increased, the behaviors of hot air became simple, and temperature range of 25~75℃ had almost no effect on behavior of flow. As the inlet temperature was increased, the temperature curve of indoor space from bottom to top was changed from linear to quadratic. Furthermore, it was confirmed that inlet velocity as well as inlet temperature also should be considered to heat indoor space equally by air-heating collector using solar heat.

Analysis on Characteristics of Behavior of Thermal Flow According to Operation Conditions of Small-sized Shell and Tube-type Heat Exchanger (소형 쉘앤튜브형 열교환기의 운전 조건에 따른 열유동 거동 특성 해석)

  • Young-Joon Yang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1109-1115
    • /
    • 2023
  • The shell and tube-type heat exchanger was the most utilized in industrial field because of its simple structure and wide operation conditions and so on. This study was performed to investigate the characteristics of behavior of thermal flow according to operation condition of small-sized shell and tube-type heat exchanger. The operation conditions, here, were set up to flow rate of hot air with temperature of 100℃, number of baffle and cut rate of baffle(BCR) using numerical analysis. As the results, both mean relative pressure and relative pressure drop was increased with quadratic curve in case of less than BCR 25%, however, decreased linearly in case of more than BCR 25%. The collision with first baffle by flow velocity and temperature, of hot air, respectively, was depended on BCR. Further it showed that the behaviors between flow velocity and temperature were almost similar.

Heat and Flow Characteristics During Melting Process of a PCM Inside a Liquid Flexitank for Cargo Containers (화물 컨테이너용 액상 백 내부 PCM의 용융 과정에 대한 열유동 특성 해석)

  • Lilong Sun;Joon Hyun Kim;Jaehoon Na;Jaeyong Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.6-17
    • /
    • 2024
  • This study examined the natural convection heat flow characteristics of the melting process of PCM (palm oil) inside a liquid flexitank(bag) for a cargo container. A film heating element was installed on the bottom of the container, and numerical analysis was performed under heat flux conditions of 1,000 to 4,000 W/m2. As a result, the melt interface of the PCM rises to a nearly horizontal state over time. In the initial stage, conduction heat transfer dominates, but gradually waves at the cell flow and melt interfaces are formed due to natural convection heat transfer. As melting progresses, the Ra number increases parabolically, and the Nu number increases linearly and has a constant value. The Nu number rises slowly under low heat flux conditions, whereas under high heat flux conditions, the Nu number rises rapidly. As the heat flux increases, the internal temperature oscillation of the liquid phase after melting increases. However, under high heat flux conditions, excess heat exceeding the latent heat is generated, and the temperature of the molten liquid is raised, so the increase in melting rate decreases. Therefore, the appropriate heating element specification applied to a 20-ton palm oil container is 2,000 W/m2.

Temperature Prediction of Cylinder Components in Medium-Speed Diesel Engine Using Conjugate Heat Transfer Analysis (복합 열전달 해석을 이용한 중속 디젤엔진 실린더 부품 온도 분포 예측)

  • Choi, Seong Wook;Yoon, Wook Hyoen;Park, Jong Il;Kang, Jeong Min;Park, Hyun Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.781-788
    • /
    • 2013
  • Predicting the engine component temperature is a basic step to conduct structural safety evaluation in medium-speed diesel engine design. Recent trends such as increasing power density and performance necessitate more effective thermal management of the engine for achieving the desired durability and reliability. In addition, the local temperatures of several engine components must be maintained in the proper range to avoid problems such as low- or high-temperature corrosion. Therefore, it is very important to predict the temperature distribution of each engine part accurately in the design stage. In this study, the temperature of an engine component is calculated by using steady-state conjugate heat transfer analysis. A proper approach to determine the thermal load distribution on the thermal boundary area is suggested by using 1D engine system analysis, 3D transient CFD results, and previous experimental data from another developed engine model. A Hyundai HiMSEN engine having 250-mm bore size was chosen to validate the analysis procedure. The predicted results showed a reasonable agreement with experimental results.

Full Aperture Black Body Design, Fabrication and Validation for Infrared Detector Calibration (적외선 검출기 검보정을 위한 대구경흑체 설계, 제작 및 검증)

  • Cho, Hyokjin;Seo, Hee-Jun;Kim, Keun-Shik;Park, Sung-Wook;Moon, Guee-Won
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.40-45
    • /
    • 2013
  • Satellite's infrared detector shall be calibrated under thermal vacuum environment using a reference black body before a launch. The full aperture black body (FABB) as an infrared calibration reference shall be composed of vacuum compatible materials and temperature controlled from $-40^{\circ}C$ to $+40^{\circ}C$ with emissivity higher than 0.95. The temperature homogeneity over the central 80 % area of the FABB front surface shall be better than 2 K. The FABB designed by thermal and flow analysis was $1m{\times}1m{\times}8mm$ copper plate on which black painted aluminum honeycomb core was attached. Copper tubes were welded on the opposite side of the honeycomb core to allow temperature regulated gaseous nitrogen to flow through them. By the FABB validation test, the temperature homogeneity was observed around 1 K using 20 PT100 sensors and modified COTS infrared camera. The emissivity value was 0.975 at $40^{\circ}C$ under atmospheric pressure.

Performance Assessment of Turbulence Models for the Prediction of Moderator Thermal Flow Inside CANDU Calandria (칼란드리아 내부의 감속재 열유동 해석을 위한 난류모델 성능 평가)

  • Lee, Gong-Hee;Bang, Young-Seok;Woo, Sweng-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.363-369
    • /
    • 2012
  • The moderator thermal flow in the CANDU calandria is generally complex and highly turbulent because of the interaction of the buoyancy force with the inlet jet inertia. In this study, the prediction performance of turbulence models for the accurate analysis of the moderator thermal flow are assessed by comparing the results calculated with various types of turbulence models in the commercial flow solver FLUENT with experimental data for the test vessel at Sheridan Park Engineering Laboratory (SPEL).Through this comparative study of turbulence models, it is concluded that turbulence models that include the source term to consider the effects of buoyancy on the turbulent flow should be used for the reliable prediction of the moderator thermal flow inside the CANDU calandria.