• Title/Summary/Keyword: 열유동해석

Search Result 273, Processing Time 0.022 seconds

Development of Numerical Analysis Technique of Thermal Flows for Experiment of Combined Weapon Systems (복합무기체계 실험을 위한 열유동 수치해석 기법 개발)

  • Kim, Sung-Dae;Tyoo, Seong-Tyoul;Baek, Sang-Hwa;Lee, Jeong-Yong;Park, So-Jin;Kim, Chul-Ju;Ko, Han-Seo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.397-400
    • /
    • 2008
  • A numerical analysis has been performed in this study to predict thermal behaviors of combined weapon systems in a large environmental tester. Also, temperature distributions of the materials of the system have been measured for the experimental conditions. The calculated thermal flow characteristics and the measured temperature distributions of the materials for the weapon systems have been analyzed to prepare for field tests in the environmental tester. The boundary conditions of the analysis are composed of inlet and outlet conditions of the environmental tester with various pressures and the limit of low temperature of -25$^{\circ}$C. The soaking time of the system in the environmental tester has been obtained by developed programs in this study to carry out the experiment in the predicted conditions.

  • PDF

A Basic Study of Thermal-Fluid Flow Analysis Using Grid Computing (그리드 컴퓨팅을 이용한 열유동 해석 기법에 관한 기초 연구)

  • Hong, Seung-Do;Ha, Yeong-Man;Cho, Kum-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.604-611
    • /
    • 2004
  • Simulation of three-dimensional turbulent flow with LES and DNS lakes much time and expense with currently available computing resources and requires big computing resources especially for high Reynolds number. The emerging alternative to provide the required computing power and working environment is the Grid computing technology. We developed the CFD code which carries out the parallel computing under the Grid environment. We constructed the Grid environment by connecting different PC-cluster systems located at two different institutes of Pusan National University in Busan and KISTI in Daejeon. The specification of PC-cluster located at two different institutes is not uniform. We run our parallelized computer code under the Grid environment and compared its performance with that obtained using the homogeneous computing environment. When we run our code under the Grid environment, the communication time between different computer nodes takes much larger time than the real computation time. Thus the Grid computing requires the highly fast network speed.

Heat and Flow Analysis Inside a Parallel-Flow Heat Exchanger (평행류 열교환기 내부의 열유동 해석)

  • Oh, Seok-Jin;Chung, Kil-Yoan;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.781-788
    • /
    • 2003
  • In the present study, the heat and flow characteristics of a parallel-flow heat exchanger are numerically analyzed by using three-dimensional turbulent modeling. Heat transfer rate and pressure drop are evaluated using the concept of the efficiency index by varying the locations, the shapes and angles of inlet/outlet, and the protrusion height of flat tube. It is found that negative angle of the inlet improves the heat transfer rate and pressure drop. Results show that the locations of the inlet and outlet should be toward the right side and the left side to the reference model, respectively, in order to enhance the heat transfer rate and pressure drop. Increasing the height of the lower header causes pressure drop to decrease and yields the good flow characteristics. The lower protrusion height of flat tube shows the improvement of the heat transfer rate and pressure drop. The heat transfer rate is greatly affected by the parameters of outlet side such as the location and angle of the outlet. However, the pressure drop is influenced by the parameters of inlet side such as the location and angle of inlet and the height of the header.

Optimal Miniaturization of Desk-Top Computer by Thermal Design (열유동 해석을 이용한 컴퓨터 구조의 소형화 설계)

  • 박성관
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.4
    • /
    • pp.318-326
    • /
    • 1999
  • Recently, electronic systems including computers have been rapidly shrinking in size while at the same time the complexity and the capability of these systems continue to grow/sup [1]/. Thus, system volumes have decreased as system power has increased, resulting in dramatic increases in system heat density. The high temperature of the computer system is considered as the major reason for low performance and shortening life of the product. It is necessary to solve this problem due to the heat density increased and to develop the design skill of the computer cabinet according to miniaturization. M4500 desk-top computer was selected for analyzing the thermal management inside cabinet. The cabinet volume, the configuration of the heating devices, the size and location of air ventilation, and the fan selection have been investigated as the important parameters to find out an optimal cabinet design. The objectives of this project were to analyze which design parameters would affect cooling performance by thermal strategy, to design an optimal model, and to measure the temperatures of the main parts to confirm the effect of the thermal design. The temperatures of each part of the optimal model were compared with those of the existing model. As a result. the volume of this miniaturized model was about 16% smaller than that of M4500 without any change in operating performance.

  • PDF

Numerical Investigation of Thermo-Fluid Flow for Improvement of Micro-Dilution Chamber on Particulate Deposition (수치적 열유동 해석을 통한 마이크로 희석챔버의 개선)

  • Kim, Sung-Hoon;Lee, Dong-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.637-645
    • /
    • 2009
  • The main purpose of this study lies on the improvement of micro dilution tunnel based on the typical porous tube type chamber. The characteristics of flow and temperature fields for steady state has been obtained by numerical analysis using FLUENT. Three different geometrical variations of the porous tube; a) increase of thickness at center, b) step increase of thickness at center and downstream, c) tapered increase of thickness, have been proposed. Accordingly results are obtained and compared in terms of penetration velocity and velocity ratio to therrmophoretic velocity for improvement against particulate deposition inside the tube. The penetration velocity and velocity ratio distributions in the upstream portion and portion of impinging of dilution air are apparently shown to be improved for the case of the step and tapered change of porous tube. The tapered change of tube thickness addition are shown to be the most effective among three geometrical changes. In addition, the considerable improvement against deposition are shown that its thickness should be at least 2mm.

The Thermal and Flow Analysis in the Channel of Plate Heat Exchanger with Crossed-Discrete Ribs (직교하는 단락형 리브를 부착한 판형 열교환기 관내측 열유동 해석)

  • Lee, Kwan-Soo;Moon, Hyoung-Kyu;Chung, Kilyoan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.678-686
    • /
    • 1999
  • The purpose of this work is to Investigate the pressure drop and the heat transfer characteristics in the channel of plate heat exchanger with crossed-discrete ribs. The flow is assumed to be three-dimensional, laminar and periodically fully developed. Computations have been carried out for angles of attack from $0^{\circ}$ to $90^{\circ}$ and ratios of rib height from 0.15 to 0.46 for various values of Reynolds and Prandtl numbers. The heat transfer was improved by inclined ribs generating helical vortices and secondary flows. The results show that the pressure drop has a maximum value at $70^{\circ}$ and the heat transfer has a maximum value at $45^{\circ}$. As the rib height increases, the pressure drop and the heat transfer increase quadratically, and the increasing rate of pressure drop is higher than that of the heat transfer. As Reynolds number increases, the pressure drop increases in proportion to the square of Reynolds number and the heat transfer increases linearly.

Thermal Flow Analysis of Operating Parameters in Autothermal Reformer (자열개질기의 운용조건에 따른 열유동 수치해석)

  • Park, Seung-Hwan;Kim, Jin-Wook;Park, Dal-Yung;Kim, Jae-Dong;Lee, Do-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.61-67
    • /
    • 2011
  • The study is to analyze the chemical and heat-flow reactions in the hydrogen generation unit(autothermal reformer), using computational numerical tools. Autothermal reformer(ATR) is involved in complex chemical reaction, mass and heat transfer due to exothermic and endothermic reactions. Therefore it is necessary to reveal the effects of various operation parameters and geometries on the ATR performance by using numerical analysis. Numerical analysis needs to dominant chemical reactions that includes Full Combustion(FC) reaction, Steam Reforming(SR) reaction, Water-Gas Shift(WGS) reaction and Direct Steam Reforming(DSR) reaction. The objective of the study is to improve theoretically the reformer design capability for the goal of high hydrogen production in the autothermal reformer using methane. Hydrogen production reached maximum in a certain value of Oxygen to Carbon Ratio(OCR) or Steam to Carbon Ratio(SCR). When the longitudinal distance to dimeter ratio(L/D) is increased, hydrogen production increases.

A Study of Heat Flow and Residual Stress Analysis in Pipe-plate Gas Metal Arc Brazing (파이프-평판 GMAB 접합부의 열유동 및 잔류음력 해석에 관한 연구)

  • 이태영;김재웅;이목영;정평석
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.413-422
    • /
    • 2001
  • In this study. two-dimensional heat flow and residual stress in arc brazing to join the pipe and plate structure were analyzed by using a commercialized FEM package. Advantages offered by arc brazing are that strong joints can be produced with lower heat input than that of previous gas metal arc welding and narrower heat affected zone can usually be obtained than that in the case of torch brazing. To investigate the effects of process variables and minimize the thermal effects on the structure, this study presents a method for analyzing the heat flow and residual stress in arc brazing process according to variables such as traveling speed, torch angle and position. The simulation results were compared with the experimental ones to verify the numerical analysis method. The experiments include the measurement of HAZ size from the section of joints and residual stresses by using strain gages named 'section method'. A comparatively good agreement between the results of numerical analysis and experimental ones could be obtained in both of the temperature distribution and residual stress of the brazed structure. Using the proposed numerical analysis method, the process parameters were evaluated to get proper arc brazing conditions.

  • PDF

Heat Flow Analysis in the Newly Developed Wave Heat Sink by Computational Simulation (전산모사에 의한 웨이브 히트싱크의 열유동 특성 해석)

  • Lee In-Gyu;Lee Sang-Woong;Kang Kae-Myung;Chang Si-Young
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.870-875
    • /
    • 2004
  • Heat flow characteristics in the newly developed Wave Heat Sink were analyzed under natural and forced convections by Icepak program using the finite volume method. Temperature distribution and thermal resistance of Wave Heat Sink with/without air vent hole on the top of fin were compared with those of a commercial Al extruded heat sink(Intel Heat Sink). Under the natural convection, the maximum temperature was $45.1^{\circ}C$ in the air vent hole typed Wave Heat Sink, which was superior to that of Intel Heat Sink. The thermal resistance was $2.51^{\circ}C/W$ in the air vent hole typed Wave Heat Sink, and it changed to $2.65^{\circ}C/W\;and\;2.16^{\circ}C/W$ with changes of gravity direction and fin height, respectively. Under the forced convection, the maximum temperature became lower than that under the natural convection. In addition, the thermal resistance lowered in the air vent hole typed Wave Heat Sink with higher fin height and it decreased with increasing the air flux.

Numerical Analysis on the Thermal Flow by a Thermoelectric Module within the Cabin of a Commercial Vehicle (상용차 캐빈 내의 열전모듈에 의한 열유동 수치해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.47-54
    • /
    • 2012
  • The steady three-dimensional numerical analysis on the thermal flow using standard k-${\varepsilon}$ turbulence model was carried out to investigate the air cooling effect of a cooler on the cabin for a commercial vehicle. Here, the heat exchanging method of this cabin cooler uses the cooling effect of a thermoelectric module. In consequence, the air system resistance of a cooler within the cabin is about 12.1 Pa as a static pressure, and then the operating point of a virtual cross-flow fan considering in this study is formed in the comparatively low flowrate region. The discharging air temperature of a cooler is about $14{\sim}15^{\circ}C$. Moreover, the air cooling temperature difference obtained under the outdoor cabin temperature of $40^{\circ}C$ shows about $7{\sim}9^{\circ}C$ in a driver resting space and about $9{\sim}14^{\circ}C$ in the front of a driver's seat including the space of a driver's foot.