• Title/Summary/Keyword: 열용량법

Search Result 28, Processing Time 0.024 seconds

Analysis of energy consumption of office building by thermal resistance-capacitance method (열저항-열용량법에 의한 사무실용 건물의 소비에너지 해석)

  • Lee, C.S.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 1997
  • This paper reports the dynamic analysis of energy consumption for an office building by heat resistance-capacitance method. If a building is divided into several wall components and the wall components is replaced by one thermal capacitance and several thermal resistances, the building becomes an electric circuit. By solving the simultaneous equations of the circuit, the dynamic heat transfer characteristics and the energy consumption rate of the building were predicted. Accuracy of modified BIN method was evaluated by the present resistance-capacitance method. The result shows that modified BIN method overpredicts the heating load of the office building 15%. Annual energy consumptions of equipments(fan, boiler, chiller) for various ventilating control system(CAV, VAV, FCU+VAV, FCU+CAV) were compared. FCU+CAV shows the minimum annual energy consumption.

  • PDF

Effect of Coagulation Heat Capacity on the PVDF Membrane via TIPS Method (열유도상분리법을 이용한 응고조의 열용량에 따른 PVDF 분리막의 구조 분석)

  • Lee, Jeong Woo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • In this study, we used TIPS (thermally induced phase separation) for the application of water treatment membrane, and observed the change in morphology of separation membrane due to the change of solidification temperature and heat capacity. For manufactured membrane, PVDF and silica with excellent mechanical properties and chemical resistance were used, and DOP (dioctyl phthalate), DBP (dibutyl phthalate) were used as the diluent. Using the SEM (scanning electron microscope), the morphology of each different coagulation solutions of heat capacity change was observed. As the heat capacity increased, the crystallization rate of PVDF was decreased and showed large pore. In contrast, It also confirmed that the smaller heat capacity, the faster the crystallization rate and make smaller pores.

Thermal Flux Analysis for the Wearable NOx Gas Sensors (웨어러블 NOx 가스센서의 열유동 해석)

  • Jang, Kyung-uk
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.793-799
    • /
    • 2019
  • In this study, the diffusion process and the thermal energy distribution gradient of the sensor were confirmed by using the finite element analysis program (COMSOL) of the mesh method to analyze the thermal diffusion in the wearable fabric (Nylon) + MWCNT gas sensor. To analyze the diffusion process of thermal energy, the structure of the gas sensor was modeled in a two dimension plane. The proposed modeling was presented with the characteristic value for the component of the sensor, and the gas sensor designed using the mesh finite element method (FEM) was proposed and analyzed by suggesting the one-way partial differential equation in the governing equation to know the degree of thermal energy diffusion and the thermal energy gradient. In addition, the temperature gradient 10[K/mm] of the anode-cathode electrode layer and the gas detection unit was investigated by suggesting the heat velocity transfer equation.

Numerical defrost analysis of automobile windshield using enthalpy method (열용량법을 이용한 자동차 전방 유리면의 제상성능 해석)

  • Hwang J. E.;Park M. S.;Park W. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.176-180
    • /
    • 2001
  • For windshield defrosting, flow analysis of inner room(vehicle) and heat conduction on the windshield surface are undertaken. Simulation for defrosting enthalpy method is usedand verification of heat and fluid flow analysis for room is done in cavity flow. The defrosting process is three dimensional phenomena and phase is changing. The result of defrosting analysis are well presenting the phase change and these results offer basic design data for defrosting phenomena.

  • PDF

Effect of Heat Capacity of Coagulant on Morphology of PVDF-Silica Mixture Through TIPS Process for the Application of Porous Membrane (다공성 분리막으로 응용을 위한 PVDF-실리카 혼합물의 응고액 열용량 변화에 따른 모폴로지 변화)

  • Lee, Jeong Woo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.458-467
    • /
    • 2017
  • In this study, we prepared PVDF membranes via TIPS for water treatment applications. PVDF was used for its excellent chemical and mechanical properties. The effect of coagulation bath composition, temperature, and heat capacity on the overall membrane morphology was studied and observed using SEM. A mixture of DOP and DBP was used as the diluent, and silica was used as an additive. It was observed that as the heat capacity of the coagulation bath increased, the crystallization rate of PVDF decreased yielding larger pores. Also, as the heat capacity of the coagulation bath decreased, the crystallization rate of PVDF increased yielding smaller pores.

Analysis of Transient Conduction Heat Loss of Solid Sphere between Constant and Variable Free Convection (상수 또는 변수의 대류 경계조건을 가지는 구의 과도열전도 손실에 대한 해석)

  • Kim, M.J.;Chea, G.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.17-22
    • /
    • 2010
  • 본 연구는 구의 과도 열전도에 의한 열손실을 계산하는 데 있어, 외부의 경계조건인 대류의 조건에 해당하는 상황을 상수 및 변수로 가정하였을 경우의 열전달문제를 해석한 것이다. 이 문제를 해결하기 위해 집중열용량법을 사용하고 있으며, 대류열전달계수의 값이 온도의 함수로 변한다고 가정하여 계산하였다. 계산을 수행한 결과 대류경계조건의 값을 상수로 가정한 경우가 열손실이 높이 평가된다는 것을 알았고, 이러한 경향을 상관식으로 정리하였다.

A Procedure for Computing Conduction Time Series Factors for Walls and Roofs with Large Thermal Capacity by Finite Difference Method (열용량이 큰 벽체나 지붕재의 전도시계열 계수를 유한차분법으로 구하는 과정)

  • Byun, Ki-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.27-36
    • /
    • 2018
  • The purpose of this paper is to apply the numerical solution procedure to compute conduction time series factors (CTSF) for construction materials with large thermal capacities. After modifying the procedure in Ref. [9], it is applied to find the CTSF for the wall type 19 and the roof type 18 of ASHRAE. The response periods for one hr pulse load are longer than 24hrs for these wall and roof. The CTSF generated using modified procedure agree well with the values presented in the ASHRAE handbook. The modified procedure is a general procedure that can be applied to find CTSF for materials with complex structures. For the large thermal capacity materials, it should be checked whether thermal response period of the material is over 24hr or not. With suggested solution procedure, it is easy to check the validity of the CTSF based on 24hr period.

Numerical Study on the Performance Assessment for Defrost and De-Icing Modes (승용차의 제상 및 성에 제거 성능 평가를 위한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.161-168
    • /
    • 2011
  • The heating, ventilating, air conditioning (HVAC) system is a very important part of an automotive vehicle: it controls the microclimate inside the passenger's compartment and removes the frost or mist that is produced in cold/rainy weather. In this study, the numerical analysis of the defrost duct in an HVAC system and the de-icing pattern is carried out using commercial CFX-code. The mass flow distribution and flow structure at the outlet of the defrost duct satisfied the duct design specification. For analyzing the de-icing pattern, additional grid generation of solid domain of ice and glass is pre-defined for conductive heat transfer. The flow structure near the windshield, streakline, and temperature fields clearly indicate that the de-icing capacity of the given defrost duct configuration is excellent and that it can be operated in a stable manner. In this paper, the unsteady changes in temperature, water volume fraction, and static enthalpy at four monitoring points are discussed.

The simultaneous measurement for thermal properties of liquids using transient probe method (과도탐침법을 이용한 액체의 열물성 동시측정)

  • Bae, Sin-Cheol;Kim, Myeong-Yun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.303-315
    • /
    • 1997
  • The theoretical model for the transient probe method is the modified Jaeger model which is used perfect line source theory. The transient probe technique has been developed for the simultaneous determination of thermal conductivity, diffusivity and volumetric heat capacity of liquids. The Levenberg-Marquardt iteration method is adapted to obtain thermal property within nonlinear range. Experimental results of liquids were found to agree well with recommended thermal property data.

Preparation of Nano-Sized ZnO Powder by Utrasonic Spray Combustion Synthesis (초음파 분무연소 합성법에 의한 나노크기 ZnO 분말의 제조)

  • 이상원;천승호;공현식;전병세
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.126-126
    • /
    • 2003
  • 산화아연은 높은 열전도도와 열용량을 갖으며, 결정 부피의 44%만이 아연 및 산소 이온으로 채워져 있어 결함의 생성이 다양하여 여러 가지 전기적, 광전기적, 촉매 특성등을 부여할 수 있어 산업전반에 널리 이용되고 있다. 따라서, 본 연구에서는 초음파 분무 연소합성법을 이용하여 Zinc nitrate hexahydrate를 산화제로, Carbohydrazide를 환원제로 사용하여, 연소합성을 위한 에너지를 최대희 얻기 위해 산화수와 환원수의 비율이 1:1이 되게 조절하여 전구체의 산화ㆍ환원 반응을 이용하여 액적의 체류시간, 농도, 온도, filtering 효과등을 조절하면서 액적 단위로 연소반응을 유도함으로써 부가적인 하소과정이 필요없이 상전이가 완료된 구형의 나노크기 ZnO 분말을 in-situ로 제조하여 입자의 크기와 형 태, 결정상등을 분석하였다.

  • PDF