• Title/Summary/Keyword: 열역학적 사이클

Search Result 76, Processing Time 0.018 seconds

Thermodynamic Analysis on Organic Rankine Cycle Using Exhaust Gas of the Chimney in a Resource Recovery Facility (폐기물 소각시설 굴뚝의 배기가스를 이용한 유기랭킨사이클 시스템의 열역학적 해석)

  • Kim, Sunhee;Sung, Taehong;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.27-35
    • /
    • 2017
  • The amount and quality of waste heat from a resource recovery facility were measured. The temperature of exhaust gas was $176.6^{\circ}C$ and the amount of that was 13.8 kg/s. This research designed a waste heat recovery system whose working fluid is R-245fa. It simulated three study cases as follows. In simulation of a basic ORC system, the turbine power output and thermal efficiency were respectively 96.56 kW, 14.3%. In simulation of a superheater connection, 0.09% of efficiency could be improved due to the increase of enthalpy by overheating of working fluid, but the obtained output was decreased with 16.58kW because of the decrease of working fluid mass. In simulation of a process heater connection, efficiency was increased up to 38.51%.

Development of a Cycle Simulation Program for Multi-Airconditioning Systems using R410A (R410A를 사용하는 멀티에어컨 시스템을 위한 사이클 시뮬레이션 프로그램 개발)

  • Kim, Young-Jae;Park, In-Sub;Kim, Hak-Hee;Yoon, Baek;Gil, Sung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.3
    • /
    • pp.210-215
    • /
    • 2002
  • In this study, the computer program called Multi_Cycle, which simulates the steady-state performance (coefficient of performance, capacity, power consumption and etc.) of multi- airconditioning systems using R410A, was developed. In order to validate the simulation program, a series of case studies were carried out. The Multi_Cycle consists of several subroutines for simulating indoor units. outdoor unit, compressor, and expansion devices. and for estimating the thermodynamic and transport properties of the refrigerants and moist air. It would appear to be advantageous to use the Multi_Cycle for a performance analysis when considering various kinds of refrigerants and the complex operating conditions of each unit making up the multi-airconditioner cycle. Moreover, the Multi_Cycle would seem to be useful tool in optimizing a multi-airconditioning system and establishing economical and efficient operating conditions in the multi-airconditioner cycle. In the present study, the Multi_Cycle was programmed with Digital Visual Fortran for the main simulation code and Visual Basic for- the graphic user interface.

  • PDF

공기조화용 자기냉동기의 연구 동향

  • 이종석
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.29 no.4
    • /
    • pp.48-54
    • /
    • 2000
  • 자성재료에 자기장을 걸어주변 가열되고 자기장을 제거하면 냉각되는 성질이 있는데, 이를 자기열량효과(magnetocaloric effect)라고 하며, 이것을 이용해서 저온을 생성시키는 방법을 자기냉동(magnetic refrigeration)이라고 한다. 큐리 온도(Curie temperature) 부근의 강자성체에 자 기장이 가해지면 전자례도내에서 쌍을 이루지 않은 전자들의 자기모벤트들이 자기장에 평행 하게 배열되는데, 이로 인해 열역학적 무질서의 척도인 엔트로피는 낮아지고 이러한 손실을 보상하기 위해 재료의 온도가 올라가게 된다.반대로 자기장이 제거되면 자기모벤트가 본래의 무질서한 상태로 돌아오며, 엔트로피가 증가하 고 재료의 온도는 떨어지게 되는 것이다. 역사적으로 보면 1881년에 Warburg가 큐리온도 부근의 철에서 자기열량효과를 처음 발견하였으며. 1926년과 1927년에 Debye와 Giauque가 각각 단열소자볍 (adiabatic demagnetization)을 제안함으로써 실용화되기 시작하여 주로 극저온을 얻는 방법으로 이용되어 왔다. 1950년도 이전의 연구는 절대온도 영도(OK)에 도달하고 자 하는 순수과학적인 노력으로서 개방사이클(open cycle)을 이용한 단열냉각 방식을 추구하 였으나, 1950년 이후부터는 공학적인 응용을 목적으로 밀폐사이클(closed cycle)을 형성하는 자기냉동기에 관한 연구가 진행되었다. 1976년에 Brown은 희토류(rare earth) 금속인 가돌리늄(Gd)을 사용하여 유체(물 80%와 에틸 알코올 20%)를 재생시킴으로써 상온에서 작동 하는 자기냉동기를 보고한 바 있다. 그는 7 T의 큰 자장을 이용하였으며, 고온부와 저온부의 온도는 각각 $46^{\circ}C와\;-1^{\circ}C로서\;47^{\circ}C$의 온도간격을 얻었다. 자기냉동에 있어서의 또 하나의 중요한 진전은 1978년과 1982년에 Steyert와 Barclay에 의해서 능동자기재생기(active magnetic r regenerator)의 개념이 소개되고 개발된 것으로, 이는 자성재료가 냉매로서 뿐만 아니라 열전달 유체의 재생기로도 사용되는 방식이다. 이상과 같은 자기냉동기술의 발달에 이어서 1997년에 미국의 Astronautics사(Wisconsin주 Madison시 소재)와 Ames 연구소(Iowa주 Ames 시 소재)의 공동연구팀이 발표한 두 가지의 새로운 진전으로 인해 공기조화 및 냉동분야에 적용할 수 있는 자기냉동기의 실용화 가능성이 한층 높아졌다. 이들의 연구결과는 (1) 자기냉동이 실온에서도 실현 가능한 기술이며 증기압 축식 냉동에 필적할 만하다는 것을 보인 것과 (2) 이미 알려져 있던 자기냉동재료보다 자기 열량효과가 훨씬 큰 새로운 재료를 발견한 것이다. 이로써 자기냉동에 대한 관심과 기대가 한결 커지고 있다. 본 원고에서는 자기냉동의 원리가 되는 자기열량효과와 이를 이용한 자기냉동의 방법 그리고 최근에 이루어진 새로운 진전에 대해 소개하고 공기조화 및 냉동분야에의 적용 가능성을 전망해 보고자 한다.

  • PDF

Performance Load Balancing and Sensitivity Analysis of Ramjet/Scramjet for Dual-Combustion/Dual-Mode Ramjet Engine Part I. Performance Load Balancing (이중램제트(이중연소/이중모드)엔진을 위한 램제트/스크램제트의 작동영역분배 및 성능민감도분석 Part I. 작동영역분배)

  • Kim, Sun-Kyoung;Jeon, Chang-Soo;Sung, Hong-Gye;Byen, Jong-Ryul;Yoon, Hyun-Gull
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.586-595
    • /
    • 2010
  • An analytical study based on physical understandings and aero-thermodynamic theories was conducted to observe the performance characteristics and to derive the essential design parameters of dual ramjet(dual-combustion/dual-mode) propulsion for wide Mach number. The performances and operating limitations of the engines with two types combustors, such as constant pressure- and constant area- combustor, over various flight Mach numbers was investigated. Finally, the transition Mach number from ramjet to scramjet was carried out to optimize performance load balancing of ramjet and scramjet.

Performance Evaluation of an Oxy-coal-fired Power Generation System - Thermodynamic Evaluation of Power Cycle (순산소 석탄 연소 발전 시스템의 성능 평가 - 동력 사이클의 열역학적 해석)

  • Lee, Kwang-Jin;Choi, Sang-Min;Kim, Tae-Hyung;Seo, Sang-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.1-11
    • /
    • 2010
  • Power generation systems based on the oxy-coal combustion with carbon dioxide capture and storage (CCS) capability are being proposed and discussed lately. Although a large number of lab scale studies for oxy-coal power plant have been made, studies of pilot scale or commercial scale power plant are not enough. Only a few demonstration projects for oxy-coal power plant are publicized recently. The proposed systems are evolving and various alternatives are to be comparatively evaluated. This paper presents a proposed approach for performance evaluation of a commercial 100 MWe class power plant, which is currently being considered for 'retrofitting' for the demonstration of the concept. The system is configurated based on design and operating conditions with proper assumptions. System components to be included in the discussion are listed. Evaluation criteria in terms of performance are summarized based on the system heat and mass balance and simple performance parameters, such as the fuel to power efficiency and brief introduction of the second law analysis. Also, gas composition is identified for additional analysis to impurities in the system including the purity of oxygen and unwanted gaseous components of nitrogen, argon and oxygen in air separation unit and $CO_2$ processing unit.

Thermodynamic Design of J-T Neon Refrigeration System Utilizing Modified Roebuck Compression Device (변형 Roebuck 압축기를 이용한 J-T 네온 냉각시스템의 열역학적 설계)

  • 정제헌;정상권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.432-438
    • /
    • 2003
  • This paper describes a modified Roebuck compression device as a potential compression device of a rotating cryogenic refrigeration system in superconducting machine such as generator or motor. The conventional cryogen transfer method from stationary refrigeration system to rotating system can be eliminated by an on-board cryogenic refrigeration system that utilizes well-designed multi-stage modified Roebuck compression device. This paper shows basic thermodynamic analysis of modified Roebuck compression device and its application for compressing neon at 77 K with substantial pressure ratio when the rotor diameter is 0.8 m with rotating speed of 3600 rpm. The device does not require any moving part in rotating frame, but two separate thermal reservoirs to convert thermal energy into mechanical compression work. The high temperature thermal reservoir is atmospheric environment at 300 K and the low temperature thermal reservoir is assumed as a liquid nitrogen bath at 77 K. The concept of the compression device in this paper demonstrates its usefulness of generating high-pressure neon at 77 K for rotating J-T neon refrigeration cycle of superconducting rotor.

Performance and structural analysis of a radial inflow turbine for the organic Rankine cycle (유기랭킨사이클용 반경류 터빈의 성능 및 구조 해석)

  • Kim, Do-Yeop;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.484-492
    • /
    • 2016
  • The turbine is an important component and has a significant impact on the thermodynamic efficiency of the organic Rankine cycle. A precise preliminary design is essential to developing efficient turbines. In addition, performance analysis and structural analysis are needed to evaluate the performance and structural safety. However, there are only a few exclusive studies on the development process of the radial inflow turbines for the organic Rankine cycle (ORC). In this study, a preliminary design of the ORC radial inflow turbine was performed. Subsequently, the performance and structural analysis were also carried out. The RTDM, which was developed as an in-house code, was used in the preliminary design process. The results of the performance analysis were found to be in good agreement with target performances. Structural analysis of the designed turbine was also carried out in order to determine whether the material selection for this study is suitable for the flow conditions of the designed turbine, and it was found that the selected aluminum alloy is suitable for the designed turbine. However, the reliability of the preliminary design algorithms and numerical methods should be strictly verified by an actual experimental test.

A Study on the Optimum of Closed ${CO}_{2}$ Gas Turbine Process for Nuclear Energy Power Plant(I) (원자력 발전소에 대한 밀폐 ${CO}_{2}$ 가스터빈 프로세스의 최적화 연구 I)

  • 이찬규;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.490-499
    • /
    • 1989
  • These days the closed cycle gas turbine attracts considerable attention due to : (1) The possibility of directly coupling the closed cycle gas turbine with a high temperature gas cooled reactor ; (2) the economical use of dry coolers to reduce the thermal charge of the environment ; and (3) the reduction of pollution and energy consumption, by replacing the domestic hearth by a central heating and power station. In this paper, we selected the optimal cycle from the characteristic of thermodynamic cycle for the optimal design of closed CO$_{2}$ gas turbine cycle usuable in nuclear energy power plant. Also the effects of between the parameters and thermal efficiency were investigated by computer simulation. These results and design data will be added to basics in optimal designing closed CO$_{2}$ cycle gas turbine plant.

Performance Analysis of Freezing Desalination System using Seawater Heat Pump (해수 히트펌프를 이용한 냉동법 담수화시스템 개념설계)

  • Lee, Ho-Saeng;Lee, Seung-Won;Yoon, Jung-In;Kim, Hyeon-Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.373-378
    • /
    • 2011
  • The freeze desalination cycle with seawater heat pump system is simulated and designed for the basic data for the design of freeze desalination system. The basic model of seawater heat pump system is refrigeration cycle and indirect freeze desalination method is used for seawater desalination. The cycle performance of seawater heat pump such as COP, compressor work, condensing capacity was analyzed and the desalination performance such as fresh water productivity and energy per unit fresh water productivity was compared with respect to the seawater temperature of condenser inlet and ice ratio in the evaporator. The compressor work and condensing capacity decreased with respect to the decrease of seawater inlet temperature. The energy per unit fresh water productivity in case of $8^{\circ}C$ seawater inlet temperature showed 28.9% lower than that of $20^{\circ}C$.

Optimum Size Combination of Heat Exchangers in a Small Gifford-Mchon/ Joule-Thomson Refrigerator (소형 Gifford-McMahon/Joule-Thomson 냉동기에서 열교환기의 최적 조합)

  • 김영률;이상용;장호명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2196-2202
    • /
    • 1992
  • The optimum size combination of heat exchangers in a Joule-Thomson(J-T) circuit for small cryogenic systems has been sought analytically, when the circuit is combined with a two-stage Gifford-McMahon(GM) cooler. Full thermodynamic cycle analysis was carried out to predict the performance of the combined refrigeration system. Relevant convective heat transfer coefficients, the computerized properties of helium, and the refrigeration capacity curve of a typical GM cooler have been used in the analysis. The result showed that, by changing the configuration(heat exchanger area ratio) of the system, the performance of the commonly-used GM/J-T refrigerators could be optimized. For the maximum refrigeration performance, the optimum mass flow rate of the refrigerant and the relative size between the heat exchangers have been obtained, when the cooling load was 0.1W at 3.995K with the total heat exchanger area being given.