• Title/Summary/Keyword: 열역학법

Search Result 146, Processing Time 0.027 seconds

Seasonal Distribution of T Serotyping and emm Genotyping of Group A Streptococci Obtained from Children with Streptococcal Infections in Masan, Korea, 2003~2004 (2003~2004년 경남 마산 지역에서 분리된 A군 연쇄구균의 T 혈청형과 emm 유전자형의 계절별 분포)

  • Jeon, Ho-Sang;Park, Hwa-Jin;Lee, Hee-Joo;Ma, Sang-Hyuk;Cha, Sung-Ho
    • Pediatric Infection and Vaccine
    • /
    • v.12 no.1
    • /
    • pp.52-60
    • /
    • 2005
  • Purpose : The aim of this study is to know seasonal distribution of group A streptococci obtained from one center using emm genotyping and T serotyping in Masan from 2003 through 2004. Methods : Among children who visited the Changwon Fatima Hospital at Masan, Korea from June 2003 through February 2004, 100 patients who had clinical findings of acute pharyngitis, scarlet fever, and cellulitis were confirmed as GAS by culture, and were enrolled in our study. All obtained GAS were sent to the WHO Collaborative Center for Reference and Research on Streptococci, University of Minnesota, Minneapolis for T serotyping and emm genotyping. We classified these results again according to seasonal and disease's entities. Results : 19 different T serotypes was typed. T4(27.5%), T1(17.6%), T6(13.7%), and T12(13.7%) serotypes were relatively common in summer, while T4(28.3%), T12(15.2%), and T12/B3264(8.7%) were common in winter. T4 and T12 were persistent all year around. Distribution of T serotypes in 89 patients with pharyngotonsillitis were T4(26.7%), T12(14.0%), T1(12.8%), and T6(11.6%) in order of frequency. 15 different emm genotypes was typed. The number of emm 1, emm 6, emm 9, and emm 44 genotypes decreased or disappeared in winter, and the number of emm 3, emm 12, and emm 89 genotypes increased or reappeared in winter. Conclusion : Because T serotyping and emm genotyping are useful tools for evaluating epidemiology and pathogenesis of group A streptococci, we should monitor these strains every year, and should serotype and genotype GAS obtained from the invasive streptococcal infections.

  • PDF

A Study on the Formation fo Epitaxial $CoSi_2$ Thin Film using Co/Ti Bilayer (Co/Ti이중박막을 이용한 $CoSi_2$에피박막형성에 관한 연구)

  • Kim, Jong-Ryeol;Bae, Gyu-Sik;Park, Yun-Baek;Jo, Yun-Seong
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.81-89
    • /
    • 1994
  • Ti film of lOnm thickness and Co film of 18nm thickness were sequentially e-heam evaporated onto Si (100) substrates. Metal deposited samples were rapidly thermal-annt.aled(KTA) in thr N1 en vironment a t $900^{\circ}C$ for 20 sec. to induce the reversal of metal bilayer, so that $CoSi_{2}$ thin films could be formed. The sheet resistance measured by the 4-point probe was 3.9 $\Omega /\square$This valur was maintained with increase in annealing time upto 150 seconds, showing high thermal stab~lity. Thc XRII spectra idrn tified the silicide film formed on the Si substrate as a $CoSi_{2}$ epitaxial layer. The SKM microgr;iphs showed smooth surface, and the cross-sectional TKM pictures revealed that the layer formed on the Si substrate were composed of two Co-Ti-Si alloy layers and 70nm thick $CoSi_{2}$ epl-layer. The AES analysis indicated that the native oxide on Si subs~rate was removed by TI ar the beginning of the RTA, and Ihcn that Co diffused to clean surface of Si substrate so that epitaxial $CoSi_{2}$ film could bt, formed. In thc rasp of KTA at $700^{\circ}C$. 20sec. followed by $900^{\circ}C$, 20sec., the thin film showed lower sheet resistance, but rough surface and interface owing to $CoSi_{2}$ crystal growth. The application scheme of this $CoSi_{2}$ epilayer to VLSI devices and the thermodynarnic/kinetic mechan~sms of the $CoSi_{2}$ epi-layer formation through the reversal of Co/Ti bdayer were discussed.

  • PDF

Application of Diffusion Models to Anomalous Sorption in Fluoropolymer-aromatic Solvent Systems (불소고분자-방향족 용매계의 비이상적 흡수에 대한 확산 모델식의 적용)

  • 이상화
    • Membrane Journal
    • /
    • v.10 no.3
    • /
    • pp.139-147
    • /
    • 2000
  • Non-Fickian (or anomalous) diffusion was observed in transient sorption of aromatic solvents(such as benzene, toluene, and chlorobenzene) in fluoropolymers (such as ETFE, ECTFE and PVDF). In this study, five other transient sorption models (Crank, Long & Richman, Berens & Hopfenberg, Neogi, Li) based on Fick's law were employed to fit the anomalous sorption data for aromatic solvents. The adjustable parameters were determined by least square analysis of the measured and predicted fractional uptake. For ETFE sorption data slightly deviating from Fickian behavior, all the models exhibited satisfactory results in fitting the anomalous sorption data. In particular, Neogj model predicted intrinsic diffusivity (0.4~0.8$\times$10$^{-5}$ $\textrm{cm}^2$/day) and equilibrium diffusivity (0.13~0.31$\times$10$^{-4}$ $\textrm{cm}^2$/day) as well as relaxation kinetics related to non-Fickain diffusion. For a typical sigmoidal sorption behavior in PVDF, only Crank's model could give the reasonable evaluation on transport properties. The ratio of intial diffusivity (D$_{i}$) to final equilibrium diffusivity (D$_{\infty}$) was ranged from 80 to 200. For the final stage of uptake In ECTFE with drastic acceleration, all the models exhibited significant deviations from the sorption data. New diffusion models based on thermodynamics and continuum mechanics should be employed to get valuable information on transport properties as well as relaxation kinetics coupled with non-Fickian diffusion.

  • PDF

Effect of Highly Pressurized Hydrogen Gas on Tensile Properties of a Low-Alloy Steel Used for Manufacturing CNG Storage Vessels (CNG 저장용기용 저합금강의 인장 특성에 미치는 고압 수소가스의 영향)

  • Lee, H.M.;Jeong, I.H.;Park, J.S.;Nahm, S.H.;Han, J.O.;Lee, Y.C.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.829-833
    • /
    • 2012
  • SNG (synthetic natural gas or substitute natural gas) could contribute greatly toward energy security. In addition, HCNG (or $H_2CNG$) is expected to be used as a fuel gas for internal combustion engines and home appliances because it has extremely low emissions and high thermal efficiency. However, the hydrogen contained in SNG or HCNG can deteriorate the mechanical properties of the materials used in existing natural gas infrastructure. Therefore, it is necessary to investigate the effect of hydrogen on the mechanical properties of such materials so that SNG or HCNG can be transported and distributed safely and reliably. In this study, the effect of highly pressurized hydrogen gas on the tensile properties of a low-alloy steel used for manufacturing CNG storage vessels was investigated using the so-called hollow tensile specimen technique.

Tracking Interdisciplinary Relationships between Scientific Researches in Energy Fields using Bibliometic Analysis (과학기술논문을 통한 에너지 연구 분야의 다학제 동태 추적분석)

  • Kang, Jong-Seok;Chung, Hyun-Sang;Lee, Il-Hyung
    • Journal of Korea Technology Innovation Society
    • /
    • v.13 no.4
    • /
    • pp.680-699
    • /
    • 2010
  • In this paper, we attempted to analysis and track dynamic properties of the interdisciplinary relationship between scientific research areas in energy field using bibliometric analysis. We created network maps with SCs (subject categories) defined from $WoS^{\circledR}$ (Web of Science, Thomson Scientific ISI, Philadelphia, USA) using co-occurrence analysis method in order to identify overall disciplines directly linked with energy fields and investigate the change of interaction between SCs as a function of time. From the results of this study, thermodynamics, fuels, chemistry/chemical engineering, and electrochemistry have differentiated into more specific disciplines while the strength of interaction with energy field gradually has increased. Meanwhile, "nuclear physics" was developed to "nuclear science & technology" toward applicable target sector and also the interaction of "environmental science" with "energy generation area" among various energy disciplines recently showed the radical increase as compared with the values of 4 years ago. Finally, through combinative reviews of today's energy policy established by South Korea government, this study will give a help for keeping up with national energy agenda meeting the diverse characteristics of academic disciplines of energy field. In addition, our results support that the use of such network analysis based on bibliometric analysis to discern shifts in academic R&D strategies and target sectors.

  • PDF

Interfacial Properties and Stress-Cure Sensing of Single-Shape Memory Alloy (SMA) Fiber/Epoxy Composites using Electro-Micromechanical Techniques (미세역학적 시험법을 이용한 단-섬유 형태 형상기억합금/에폭시 복합재료의 계면특성 및 응력-경화 감지능)

  • Jang, Jung-Hoon;Kim, Pyung-Gee;Wang, Zuo-Jia;Lee, Sang-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.9 no.3
    • /
    • pp.20-26
    • /
    • 2008
  • It is well know that the structure of shape memory alloy (SMA) can change from martensite austenite by either temperature or stress. Due to their inherent shape recovery properties, SMA fiber can be used such as for stress or cure-monitoring sensor or actuator, during applied stress or temperature. Incomplete superelasticity was observed as the stress hysteresis at stress-strain curve under cyclic loading test and temperature change. Superelasticity behavior was observed for the single-SMA fiber/epoxy composites under cyclic mechanical loading at stress-strain curve. SMA fiber or epoxy embedded SMA fiber composite exhibited the decreased interfacial properties due to the cyclic loading and thus reduced shape memory performance. Rigid epoxy and the changed interfacial adhesion between SMA fiber and epoxy by the surface treatment on SMA fiber exhibited similar incomplete superelastic trend. Epoxy embedded single SMA fiber exhibited the incomplete recovery during cure process by remaining residual heat and thus occurring residual stress in single SMA fiber/epoxy composite.

  • PDF

Subjective Wear Comfort and Related Fabric Surface Parameters Including Fractal Dimension of Contact Points (Fractal 차원과 면 혼방직물 셔츠의 착용 쾌적감)

  • 김정화;이현영;홍경희
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.157-161
    • /
    • 1999
  • 본 연구에서 직물의 열, 수분 전달특성과 KES-FB의 역학적 특성치, 직물표면의 fractal dimension을 측정하여 주관적 의복 착용 쾌적감을 예측하고자 하였다. 실험의복에 사용된 직물은 면 100% 평직물, 면/PET 혼방직물, 피치가공된 면/PET 혼방직물, PET 100% 평직물, 알칼리 감량가공된 PET 100% 크레이프 직물이었으며, 실험의복의 형태는 긴 소매 셔츠로 하였다. 착용실험은 온도 29$\pm$0.5$^{\circ}C$, 상대습도 75$\pm$2%RH, 기류 0.15m/s를 유지하는 항온항습실에서 실시하였고 36명의 여성 피험자(20-23세)들이 참여하였다. 의복 착용감의 하위 구성차원을 파악하기 위해 실험결과를 요인분석한 결과 5 개의 요인으로 추출되었다. 제 1 요인은 체온상승, 수분특성과 관련이 있는 온열.발한감이었으며, 제 2 요인은 무게ㆍ두께감, 제 3 요인은 회복특성감, 제 4 요인은 표면접촉감, 제 5 요인은 온냉감으로 구성되었다. 직물의 표면특성을 정량화하는 방법으로 도입한 fractal dimension 의 분석값들과 종래의 가장 보편적으로 이용되어 온 KES_FB 의 표면 특성치들이 주관적 착용쾌적감 예측에 얼마나 기여하는지 비교해 본 결과, 표면접촉감은 fractal dimension, 접촉점들의 총면적, 접촉점들의 평균 axis ratio, MMD, SMD와 높은 상관을 나타내었다. 또한 종합적 착용쾌적감에 대해서는 SMD 를 제외한 척도들이 유의한 상관을 보였으며, 그 중에서도 fractal dimension 과 접촉점들의 총면적은 0.8 이상의 높은 상관을 나타내었다. 착용쾌적감을 예측하기 위한 회귀분석결과에서는 fractal dimension 만으로 쾌적감의 74%가 설명되었으며 공기 투과도를 첨가하면 두 변수로 $R^2$=.792가 되었다. 설명되는 누적분산값은 67.18%였다.주관적 평가의 결과와 객관적 평가 결과를 이용해 마직물의 태를 평가하는 산출식을 제시하였다. 태 평가치의 경우 16가지 특성치를 모두 넣는 방법과 stepwise 방법, 또 Kawabatark 사용한 순차적 군 회귀법의 세가지 방법의 회귀식 중 16가지 특성치를 모두 넣는 방법의 결정계수가 가장 높았다.tosterone농도는 107.7$\pm$12.0 pmol/l이었고, 남성의 타액내 농도는 274.2$\pm$22.1 pmol/l이었다. 이상의 결과로 보아 본 연구에서 정립된 EIA 방법은 RIA를 대신하여 소규모의 실험실에서도 활용할 수 있을 것으로 사려된다.또한 상실기 이후 배아에서 합성되며, 발생시기에 따라 그 영향이 다르고 팽창과 부화에 관여하는 것으로 사료된다. 더욱이, 조선의 ${\ulcorner}$구성교육${\lrcorner}$이 조선총독부의 관리하에서 실행되었다는 것을, 당시의 사범학교를 중심으로 한 교육조직을 기술한 문헌에 의해 규명시켰다.nd of letter design which represents -natural objects and was popular at the time of Yukjo Dynasty, and there are some documents of that period left both in Japan and Korea. "Hyojedo" in Korea is supposed to have been influenced by the letter design. Asite- is also considered to have been "Japanese Letter Jobcheso." Therefore, the purpose of this study is to look into the origin of the letter designs in t

  • PDF

Development of CFD model for Predicting Ventilation Rate based on Age of Air Theory using Thermal Distribution Data in Pig House (돈사 내부 열환경 분포의 공기연령 이론법 적용을 통한 전산유체역학 환기 예측 모델 개발)

  • Kim, Rack-woo;Lee, In-bok;Ha, Tae-hwan;Yeo, Uk-hyeon;Lee, Sang-yeon;Lee, Min-hyung;Park, Gwan-yong;Kim, Jun-gyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.61-71
    • /
    • 2017
  • The tracer gas method has an advantage that can estimate total and local ventilation rate by tracing air flow. However, the field measurement using tracer gas has disadvantages such as danger, inefficiency, and high cost. Therefore, the aim of this study was to evaluate ventilation rate in pig house by using the thermal distribution data rather than tracer gas. Especially, LMA (Local Mean Age), which is an index based on the age of air theory, was used to evaluate the ventilation rate in pig house. Firstly, the field experiment was conducted to measure micro-climate inside pig house, such as the air temperature, $CO_2$ concentration and wind velocity. And then, LMA was calculated based on the decay of $CO_2$ concentration and air temperature, respectively. This study compared between LMA determined by $CO_2$ concentration and air temperature; the average error and root mean square error were 3.76 s and 5.34 s. From these results, it was determined that thermal distribution data could be used for estimation of LMA. Finally, CFD (Computational fluid dynamic) model was validated using LMA and wind velocity. The mesh size was designed to be 0.1 m based on the grid independence test, and the Standard $k-{\omega}$ model was eventually chosen as the proper turbulence model. The developed CFD model was highly appropriate for evaluating the ventilation rate in pig house.

Effect of Critical Cooling Rate on the Formation of Intermetallic Phase During Rapid Solidification of FeNbHfBPC Alloy

  • Kim, Song-Yi;Oh, Hye-Ryeong;Lee, A-Young;Jang, Haneul;Lee, Seok-Jae;Kim, Hwi-Jun;Lee, Min-Ha
    • Journal of Korea Foundry Society
    • /
    • v.41 no.3
    • /
    • pp.235-240
    • /
    • 2021
  • We present the effect of the critical cooling rate during rapid solidification on the nucleation of precipitates in an Fe75B13P5Nb2Hf1C4 (at.%) alloy. The thermophysical properties of the rapidly solidified Fe75B13P5Nb2Hf1C4 liquids, which were obtained at various cooling rates with various sizes of gas-atomized powder during a high-pressure inert gas-atomization process, were evaluated. The cooling rate of the small-particle powder (≤20 ㎛) was 8.4×105 K/s, which was 13.5 times faster than that of the large-particle powder (20 to 45 mm; 6.2×104 K/s) under an atomized temperature. A thermodynamic calculation model used to predict the nucleation of the precipitates was confirmed by the microstructural observation of MC-type carbide in the Fe75B13P5Nb2Hf1C4 alloy. The primary carbide phase was only formed in the large-particle gas-atomized powder obtained during solidification at a slow cooling rate compared to that of the small-particle powder.

Effect of Bottom Hole Pressure and Depressurization Rate on Stability and Gas Productivity of Hydrate-bearing Sediments during Gas Production by Depressurization Method (감압법을 이용한 가스 생산 시 하이드레이트 부존 퇴적층의 지반 안정성 및 가스 생산성에 대한 시추 공저압 및 감압 속도의 영향)

  • Kim, Jung-Tae;Kang, Seok-Jun;Lee, Minhyeong;Cho, Gye-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.3
    • /
    • pp.19-30
    • /
    • 2021
  • The presence of the hydrate-bearing sediments in Ulleung Basin of South Korea has been confirmed from previous studies. Researches on gas production methods from the hydrate-bearing sediments have been conducted worldwide. As production mechanism is a complex phenomenon in which thermal, hydraulic, and mechanical phenomena occur simultaneously, it is difficult to accurately conduct the productivity and stability analysis of hydrate bearing sediments through lab-scale experiments. Thus, the importance of numerical analysis in evaluating gas productivity and stability of hydrate-bearing sediments has been emphasized. In this study, the numerical parametric analysis was conducted to investigate the effects of the bottom hole pressure and the depressurization rate on the gas productivity and stability of hydrate-bearing sediments during the depressurization method. The numerical analysis results confirmed that as the bottom hole pressure decreases, the productivity increases and the stability of sediments deteriorates. Meanwhile, it was shown that the depressurization rate did not largely affect the productivity and stability of the hydrate-bearing sediments. In addition, sensitivity analysis for gas productivity and stability of the sediments were conducted according to the depressurization rate in order to establish a production strategy that prevents sand production during gas production. As a result of the analysis, it was confirmed that controlling the depressurization rate from a low value to a high value is effective in securing the stability. Moreover, during gas production, the subsidence of sediments occurred near the production well, and ground heave occurred at the bottom of the production well due to the pressure gradient. From these results, it was concluded that both the productivity and stability analyses should be conducted in order to determine the bottom hole pressure when producing gas using the depressurization method. Additionally, the stress analysis of the production well, which is induced by the vertical displacements of sediments, should be evaluated.