DOI QR코드

DOI QR Code

Effect of Bottom Hole Pressure and Depressurization Rate on Stability and Gas Productivity of Hydrate-bearing Sediments during Gas Production by Depressurization Method

감압법을 이용한 가스 생산 시 하이드레이트 부존 퇴적층의 지반 안정성 및 가스 생산성에 대한 시추 공저압 및 감압 속도의 영향

  • 김정태 (한국과학기술원 건설 및 환경공학과) ;
  • 강석준 (한국과학기술원 건설 및 환경공학과) ;
  • 이민형 (한국과학기술원 건설 및 환경공학과) ;
  • 조계춘 (한국과학기술원 건설 및 환경공학과)
  • Received : 2021.02.22
  • Accepted : 2021.03.15
  • Published : 2021.03.31

Abstract

The presence of the hydrate-bearing sediments in Ulleung Basin of South Korea has been confirmed from previous studies. Researches on gas production methods from the hydrate-bearing sediments have been conducted worldwide. As production mechanism is a complex phenomenon in which thermal, hydraulic, and mechanical phenomena occur simultaneously, it is difficult to accurately conduct the productivity and stability analysis of hydrate bearing sediments through lab-scale experiments. Thus, the importance of numerical analysis in evaluating gas productivity and stability of hydrate-bearing sediments has been emphasized. In this study, the numerical parametric analysis was conducted to investigate the effects of the bottom hole pressure and the depressurization rate on the gas productivity and stability of hydrate-bearing sediments during the depressurization method. The numerical analysis results confirmed that as the bottom hole pressure decreases, the productivity increases and the stability of sediments deteriorates. Meanwhile, it was shown that the depressurization rate did not largely affect the productivity and stability of the hydrate-bearing sediments. In addition, sensitivity analysis for gas productivity and stability of the sediments were conducted according to the depressurization rate in order to establish a production strategy that prevents sand production during gas production. As a result of the analysis, it was confirmed that controlling the depressurization rate from a low value to a high value is effective in securing the stability. Moreover, during gas production, the subsidence of sediments occurred near the production well, and ground heave occurred at the bottom of the production well due to the pressure gradient. From these results, it was concluded that both the productivity and stability analyses should be conducted in order to determine the bottom hole pressure when producing gas using the depressurization method. Additionally, the stress analysis of the production well, which is induced by the vertical displacements of sediments, should be evaluated.

선행 연구를 통해 우리나라 동해 울릉 분지에 천연가스 자원인 하이드레이트 부존 퇴적층의 존재가 확인되었다. 퇴적층에서 가스를 생산하기 위한 시도는 세계적으로 연구되고 있으며, 생산 메커니즘은 열-수리-역학적 현상이 동시에 발생하는 복합적인 현상이다. 하이드레이트의 생산성 및 안정성 평가는 실험실 규모로 수행되기에는 어려움이 있다. 따라서, 가스 하이드레이트의 생산성 및 퇴적층의 안정성 평가를 위해서는 전산 수치 해석이 필수적으로 수행되어야 한다. 이 연구에서는 여러 가지 가스 하이드레이트 생산 방법 중 감압법을 이용한 생산 시 목표 공저압 및 감압속도에 따른 하이드레이트 퇴적층의 안정성과 가스 생산성에 대한 영향을 전산 모사 해석을 통해 분석하였다. 연구결과 목표 공저압이 낮을수록 생산성은 향상되고 안정성은 악화되는 것을 확인하였고, 감압 속도는 가스 생산성 및 퇴적층의 안정성에 큰 영향을 미치지 않는 것을 확인할 수 있었다. 추가적으로 실제 시험 생산 시 발생할 수 있는 사질생산 현상에 대한 대응 전략 수립을 위해 감압 속도 조절에 따른 가스 생산성 및 퇴적층의 안정성 평가 해석을 수행하였다. 해석 결과 낮은 감압 속도에서 높은 감압 속도로 변경 시킬 경우 안정성 확보에 효과가 있음을 확인하였다. 또한, 가스 생산 시 하이드레이트 해리로 인한 퇴적층의 침하가 발생하고 시추 생산정 하부에서는 압력 구배로 인해 지반 융기가 발생하는 것을 확인하였다. 이 결과를 통해 감압법을 활용한 가스 생산 시 목표 공저압 선정을 위해서는 생산성 및 안정성에 대한 고려가 동시에 수행되어야 하며, 지반 변위로 인해 생산 시추공에 발생하는 응력에 대한 고려도 필수로 수행되어야 한다는 결론을 얻었다.

Keywords

References

  1. Cha, Y., Yun, T. S., Kim, Y. J., Lee, J. Y., and Kwon, T. H. (2016), Geomechanical, Hydraulic and Thermal Characteristics of Deep Oceanic Sandy Sediments Recovered during the Second Ulleung Basin Gas Hy drate Expedition, Energies, Vol.9, No.10, p.775. https://doi.org/10.3390/en9100775
  2. Holder, G. D. and P. F. Angert (1982), Simulation of Gas Production from a Reservoir Containing Both Gas Hydrates and Free Natural Gas, In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. doi:10.2118/11105-MS.
  3. Huh, D.‐G. and Lee, J. Y. (2017), Overview of Gas Hy drates R&D, Journal of the Korean Society of Mineral and Energy Resources Engineers, Vol.54, No.2, pp.201-214. https://doi.org/10.12972/ksmer.2017.54.2.201
  4. Jianjun, L., Zuliang, S., and Yongxiang, Z. (2017), Numerical Simulation of the Decomposition of Natural Gas Hydrates by Depressurization, Journal of Southwest Petroleum University (Science & Technology Edition), Vol.39, No.1, p.80.
  5. Kamath, V. A. (1984), Study of heat transfer characteristics during dissociation of gas hydrates in porous media. Pittsburgh Univ., PA (USA).
  6. Kamath, V. A. and S. P. Godbole (1987), Evaluation of Hot-Brine Stimulation Technique for Gas Production from Natural Gas Hydrates, Journal of Petroleum Technology, Vol.39, No.11, pp.1379-1388. doi: 10.2118/13596-PA.
  7. Kim, A. R., Kim, H. S., Cho, G. C., and Lee, J. Y. (2017), Estimation of Model Parameters and Properties for Numerical Simulation on Geomechanical Stability of Gas Hydrate Production in the Ulleung Basin, East Sea, Korea, Quaternary International, 459, pp.55-68. https://doi.org/10.1016/j.quaint.2017.09.028
  8. Kim, A. R., Kim, J. T., Cho, G. C., and Lee, J. Y. (2018), Methane Production from Marine Gas Hydrate Deposits in Korea: Thermal-Hydraulic‐mechanical Simulation on Production Wellbore Stability, Journal of Geophysical Research: Solid Earth, Vol.123, No.11, pp.9555-9569. https://doi.org/10.1029/2018JB015875
  9. Kim, H. C., Bishnoi, P. R., Heidemann, R. A., and Rizvi, S. S. (1987), Kinetics of Methane Hydrate Decomposition, Chemical engineering science, Vol.42, No.7, pp.1645-1653. https://doi.org/10.1016/0009-2509(87)80169-0
  10. Kim, H. S., Riedel, M., Ryu, B. J., Kim, G. Y., and Bahk, J. J. (2013), Improving Gas Hydrate Saturation Estimates Using P-wave Velocity Log Data by Incorporating XRD-Data for Detailed Matrixmineralogy Definition, Marine and petroleum geology, 47, 155-167. https://doi.org/10.1016/j.marpetgeo.2013.05.020
  11. Kurihara, M., Sato, A., Funatsu, K., Ouchi, H., Yamamoto, K., Numasawa, M., and Ashford, D. I. (2010, January), Analysis of Production Data for 2007/2008 Mallik Gas Hydrate Production Tests in Canada, In International Oil and Gas Conference and Exhibition in China, Society of Petroleum Engineers.
  12. Lee, G. H., Bo, Y. Y., Yoo, D. G., Ryu, B. J., and Kim, H. J. (2013), Estimation of the Gas-hydrate Resource Volume in a Small Area of the Ulleung Basin, East Sea Using Seismic Inversion and Multi-attribute Transform Techniques, Marine and petroleum geology, 47, pp.291-302. https://doi.org/10.1016/j.marpetgeo.2013.04.001
  13. McGuire, P. L. (1981), Methane Hydrate Gas Production by Thermal Stimulation, To be presented at the Fourth Canadian Permafrost Conference, Society of Petroleum Engineers.
  14. Ryu, B. J., Kim, G. Y., Chun, J. H., Bahk, J. J., Lee, J. Y., Kim, J. H., ... and Scientists, U. B. G. H. (2012), The Second Ulleung Basin Gas Hydrate Drilling Expedition 2 (UBGH2).
  15. Shin, H. (2014), Development of a Numerical Simulator for Methane-hydrate Production, JOURNAL OF THE KOREAN GEOTECHNICAL SOCIETY, Vol.30, No.9, pp.67-75. https://doi.org/10.7843/kgs.2014.30.9.67
  16. Sloan, E. D. and C. Koh (2007), Clathrate Hydrates of Natural Gases, 3th ed. Boca Raton, FL: CRC Press.
  17. Sun, Z., Xin, Y., Sun, Q., Ma, R., Zhang, J., Lv, S., ... and Wang, H. (2016), Numerical Simulation of the Depressurization Process of a Natural Gas Hydrate Reservoir: An Attempt at Optimization of Field Operational Factors with Multiple Wells in a Real 3D Geological Model, Energies, Vol.9, No.9, p.714. https://doi.org/10.3390/en9090714
  18. Uchida, S., Klar, A., and Yamamoto, K. (2016), Sand Production Model in Gas Hydrate-bearing Sediments, International Journal of Rock Mechanics and Mining Sciences, 86, pp.303-316. https://doi.org/10.1016/j.ijrmms.2016.04.009
  19. Van Genuchten, M. T. (1980), A Closed‐form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil science society of America journal, Vol.44, No.5, pp.892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  20. Wang, Y. and X. S. Li (2013), Research Progress of Natural Gas Hydrate Production Technology. Advances in New and Renewable Energy, Vol.1, No.1, pp.69-79. doi:10.3969/j.issn.2095-560X.2013.01.007.
  21. Wang, Y., J. C. Feng, X. S. Li, Y. Zhang, and G. Li (2016), Large Scale Experimental Evaluation to Methane Hydrate Dissociation below Quadruple Point in Sandy Sediment. Applied Energy 162: 372-381. doi:10.1016/j.apenergy.2015.10.099.
  22. Whitaker, S. (1986), Flow in Porous Media I: A Theoretical Derivation of Darcy's Law, Transport in porous media, Vol.1, No.1, pp.3-25. https://doi.org/10.1007/BF01036523
  23. Xia, Z., Wang, X., and Zhang, X. (2020), Investigation of the Hydrate Reservoir Production under Different Depressurization Modes, Marine Georesources & Geotechnology, Vol.38, No.8, pp. 1002-1012. https://doi.org/10.1080/1064119x.2019.1646845
  24. Yu, M., W. Li, L. Jiang, X. Wang, M. Yang, and Y. Song (2018), Numerical Study of Gas Production from Methane Hydrate Deposits by Depressurization at 274 K. Applied Energy 227:28-37. doi: 10.1016/j.apenergy.2017.10.013.