• Title/Summary/Keyword: 열에너지 성능

Search Result 82, Processing Time 0.023 seconds

Effect of processing time on durability for anodized 5000 series Al alloy (양극산화된 5000계열 알루미늄 합금의 내구성에 미치는 공정시간의 영향)

  • Lee, Seung-Jun;Han, Min-Su;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.320-320
    • /
    • 2015
  • 표면개질이란 재료 본연의 특성만으로 원하는 성능과 기능을 발휘할 수 없을 때 기재 표면에 열에너지, 응력 등을 부가하여 새로운 표면층을 형성하는 방법이다. 특히 양극산화 기술을 이용해 형성된 피막은 경도 및 내마모성 등 기계적 성질이 우수하고, 공정조건 등을 변화시켜 피막 두께와 형상 조절이 용이하여 센서, 필터, 광학용 박막 그리고 전해콘덴서 등에도 주로 사용되고 있다. 본 연구에서는 5083 알루미늄 합금을 이용해 해양환경에서 우수한 내구성을 보유할 수 있는 최적의 양극산화 공정시간을 선정하고자 캐비테이션 실험을 실시하였다. 실험 결과, 공정시간 40분에서 안정적인 산화피막 생성과 함께 탁월한 내캐비테이션 특성을 나타냈다.

  • PDF

A study of a thermal energy equipment for controlling airborne microorganisms in indoor laboratory environments (열에너지 활용 부유미생물 제어장치 설계 및 실험실 실내공기를 대상으로 한 성능측정에 관한 연구)

  • Kim, Hyun Geon;Hwang, Gi Byung;Lee, Jun Hyun;Lee, Byung Uk
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.133-138
    • /
    • 2009
  • Airborne microorganisms, termed bioaerosols, are etiological agents of many respiratory and skin diseases. There are high demands of controlling the concentration of bioaerosols, specifically in indoor environments. Here, a new system for controlling indoor bioaerosols is designed and evaluated. An idea of a short time exposure to a thermal energy is used in the design of the equipment. The system was tested in laboratory environments. The experimental results show that the new system can reduce the concentration of viable bioaerosols of indoor laboratory environments.

  • PDF

증기발생기 스너버 링크장치 계통의 기하학적 해석

  • 이상호;윤기석;김태완;전장환;김종민
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.42-48
    • /
    • 1997
  • 원자로 냉각재 계통의 주요 구성요소중의 하나인 증기발생기는 원자로의 정상운전 과정에서 발생되는 고온의 열에너지를 2차 측으로 전달하여 터빈을 구동하기 위한 증기를 생산하는 역할을 하게 된다. 동적하중으로부터 증기발생기를 보호하고, 정상운전시 고온 고압에 의해 발생하는 열팽창을 흡수하기 위하여 유압식 스너버를 이용하여 증기발생기를 지지한다. 본 연구에서는 증기발생기 스너버의 이동거리를 해석하기 위한 링크장치의 기하학적 계통을 모델링하여 제시하고, 스너버의 이동거리 해석에 영향을 미치는 인자를 추출하여 검토하였다. 또한 스너버의 강성값 결정 과정에서 요구되는 레버기구의 하중분담율을 해석할 수 있는 방법을 개발하였다. 해석 결과의 타당성을 검토하기 위하여 현재 건설중인 1000Mwe급 표준 가압형 경수로 발전소의 고온 성능시험과정에서 실측한 결과와 비교 검토하였다.

  • PDF

Thermal Dissipation Performance of the Ventilated Brake Disc having Helical Grooved Vent (나선형 홈이 있는 벤틸레이티드 브레이크 디스크의 열 방출 성능)

  • Choi, Young;Choi, Ju-Won;Kim, Hyung-Man;Seo, Yong-We
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.117-123
    • /
    • 2004
  • A brake disc with helical grooved vent in radial direction is proposed for the improvement of thermal dissipation. The heat transfer phenomenon is analyzed far both the proposed disc and the conventional one using finite element method. The thermal dissipation is considerably influenced by the geometrical differences of the brake discs. The results of the analysis show that the proposed brake disc with helical grooved vent has the improved performance to dissipate the thermal energy more effectively.

Performance evaluation of types of sea water heat exchanger for floating architecture (플로팅 건축에서 해수열 이용을 위한 수중 열교환기 모델 개발과 성능 평가)

  • Kim, Byeol;Lee, Chang-Hun;Koo, Jae-Hyeok;Hwang, Kwang-Il
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.287-288
    • /
    • 2013
  • Concerns on the floating architecture development has been increased on the viewpoint of ocean space due to the increases of GDP and environmental issues such as sea level rise. However, basic research on the water heat exchanger for utilizing seawater thermal energy is insufficient. So, The purpose of this research is to develop a sea water heat exchanger model and to evaluate the performance throughout the experiment for seawater heat utilization.

  • PDF

Application of Water Mist System for a Power Transformer Room -Cooling Characteristics (Part 2) (변압기실 화재에 대한 미분무수 소화시스템의 적용 -냉각특성을 중심으로(Part 2))

  • Choi Byung-Il;Han Yong-Shik;Kim Myung-Bae
    • Fire Science and Engineering
    • /
    • v.19 no.4 s.60
    • /
    • pp.37-41
    • /
    • 2005
  • The present study describes the cooling performance of two kinds of water mist systems used in fire extinguishment. The cooling is necessary for the prevention of an auto re-ignition of the power transformer. A heat source for such the re-ignition is the accumulated thermal energy in the dielectric oil from the transformer core. Because of the weight of the real core, reduced-scale experiments are carried out. A similarity analysis Is also performed to determine the discharge time of the water mist systems from the experimental results. The discharge time to prevent the re-ignition in the real-scale transformer is estimated about 12 hour from the similarity analysis of the reduced-scale experiments.

A Numerical Study on the Performance Analysis of a Solar Air Heating System with Forced Circulation Method (강제순환 방식의 공기가열식 태양열 집열기의 성능분석에 관한 수치해석 연구)

  • Park, Hyeong-Su;Kim, Chul-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.122-126
    • /
    • 2017
  • The aim of this study was to develop a device for solving the heating problem of living space using heated air, utilizing a simple air heater type collector for solar energy. At the present time, this study assessed the possibility of a development system through theoretical calculations for the amount of available energy according to the size change of the air-heated solar energy collector. To produce and supply hot water using the heat energy of the sun, hot water at $100^{\circ}C$ or less was produced using a flat or vacuum tube type collector. The purpose of this study was to research the air heating type solar collector that utilizes heating energy with heating air above $75^{\circ}C$, by designing and manufacturing an air piping type solar collector that is a simpler type than a conventional solar collector system. The analysis results were obtained for the generated air temperature ($^{\circ}C$) and the production of air (kg/h) to determine the performance of air heating by an air-heated solar collector according to the heat transfer characteristics in the collector of the model when a specified amount of heat flux was dropped into a solar collector of a certain size using PHOENICS, which is a heat flow analysis program applying the Finite Volume Method. From the analysis result, the temperature of the air obtained was approximately $40.5^{\circ}C$, which could be heated using an air heating tube with an inner diameter of 0.1m made of aluminum in a collector with a size of $1.2m{\times}1.1m{\times}0.19m$. The production of air was approximately 161 m3/h. This device can be applied to maintain a suitable environment for human activity using the heat energy of the sun.

A Study on Composition and Utilization of Waste Heat Recovery System Assuming Aerobic Liquid-composting Fermentation heat (호기성 액비화 발효열을 가정한 폐열회수시스템 구성 및 활용 연구)

  • Lim, Ryugap;Jang, Jae Kyung;Kang, Taegyung;Son, Jinkwan;Lee, Donggwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.56-66
    • /
    • 2021
  • In this study, a waste heat recovery system was devised and the performances of components incorporated to recover the heat generated during the processing of aerobic liquid-composting in a livestock manure treatment facility were analyzed. In addition, the availability of recovered heat was confirmed. The heat generated by liquid fermentation in the livestock manure treatment facility was also checked. Experimental temperatures were set at 35, 40, and 45 ℃ based on considerations of the uniformity of aerobic liquid-composting fermentation tank temperature and its operating range (34.5 ~ 43.9 ℃). Recovered heat energies from the combined heat exchanger, which consisted of PE and STS pipes, were 53.5, 65.6, 74.4 MJ/h, The heat pump of capacity 5 RT was heated at 95.6, 96.1, 98.9 MJ/h and the heating COPs of the pump were 4.53, 4.62, and 4.65, respectively. The maximum hot water production capacity of the heat exchanger assuming a fermentation tank temperature of 45 ℃ confirmed an energy supply of 56 360 kcal/day. The heating capacity of the FCU linked to the heat storage tank was 20.8 MJ/h, and the energy utilization efficiency was 96.1%. When livestock manure was dried using the FCU, it was confirmed that the initial function rate was reduced by 50.5 to 45.8 % after drying.

Performance analysis simulation for domestic application of heat pump by using sea water heat source (해수열에너지를 이용한 히트펌프의 국내 적용을 위한 성능평가 시뮬레이션)

  • Lim, Seungtaek;Kim, Jungsik;Oh, Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.814-820
    • /
    • 2014
  • Due to the development of human civilization, industrialization and urbanization, the human race demanded the food, clothing and shelter as well as a comfortable living environment. For the purpose of this, the refrigeration and air conditioning part was carried out research and development. However, high oil prices and environmental pollution having problems in the 21st century cannot be overlooked. As an alternative, thermal system was designed using the heat pump to applied sea water heat source. In this paper, outside and sea temperatures are analysed in 2010 and carried out the performance analysis simulation at All water and All Air heat pump system by HYSYS program for domestic use. As a result, total average COP of the system is 3.37 from All Water system and All Air is 3.48. It showed that high performance confirmed in both system.

Study on Performance Evaluation and Efficiency Comparison for Solar Collector with Thermosyphon Tube-type (태양열집열기의 성능평가 및 열사이폰관형 집열기의 효율 비교 연구)

  • Sim, Han-Sub;Yang, Young-Joon
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.175-182
    • /
    • 2014
  • The use of solar energy among renewable energy tends to increase because of infinity and cleanness of resources. Even though the consumption rate of solar energy in our country is still low, however, in recent years, the research for solar energy have been widely conducted due to policy support of government. This study was performed to make the system of performance test for solar collector and to investigate thermal efficiency for solar collector with thermosyphon tube-type. As a result, in case of indoors measurement using halogen lamp, thermal efficiency for solar collector with thermosyphon tube-type was increased about 15~22% after 120 minutes compared with that of solar collector with double evacuated tube-type. In addition, in case of outdoors measurement, thermal efficiency of thermosyphon tube-type was showed maximum about 46% higher than double evacuated tube-type.