• Title/Summary/Keyword: 열손상 콘크리트

Search Result 48, Processing Time 0.021 seconds

A Study on Fire-Resistant Performance of Concrete Using Nano-Silica Perticles (나노 실리카 분말을 혼입한 콘크리트의 내화성능연구)

  • Jo Byung-Wan;Park Jong-Bin;Park Jong-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.247-254
    • /
    • 2005
  • Recently, since the advanced nano technology develops unique physical and chemical properties different from those of the conventional materials. Normal concretes mixed with nano - $SiO_2$ have been studied to improve the fire-resistance with high strength and lower heat conductivity. In this pilot study, the nano-particle contents in the specimens (${\Phi}100{\times}200 mm$) were 0, 2, 4, and $6\%$ by weight of cement, and fire-temperatures $200^{\circ}C$, $500^{\circ}C$, and $800^{\circ}C$ were considered. The results show that as the nano-particle contents increases, the weight loss of concrete gradually decreases, and the compressive strength after fire-attack increases effectively.

Analysis of impact damage behavior of GFRP-strengthened RC wall structures subjected to multiple explosive loadings (복합 폭발하중을 받는 GFRP 보강 RC 벽체 구조물의 비선형 충격 손상거동 해석)

  • Noh, Myung-Hyun;Lee, Sang-Youl;Park, Tae-Hyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1033-1036
    • /
    • 2008
  • In this paper, the analysis of impact damage behavior of a reinforced concrete structure that undergoes both a shock impulsive loading and an impact loading due to the air blast induced from an explosion is performed. Firstly, a pair of multiple loadings are selected from the scenario that an imaginary explosion accident is assumed. The RC structures strengthened with glass fiber reinforced polymer (GFRP) composites are considered as a scheme for retrofitting RC wall structures subjected to multiple explosive loadings and then the evaluation of the resistant performance against them is presented in comparison with the result of the evaluation of a RC structure without a retrofit. Also, in order to derive the result of the analysis similar to that of real explosion experiments, which require the vast investment and expense for facilities, the constitutive equation and the equation of state (EOS) which can describe the real impact and shock phenomena accurately are included with them. In addition, the numerical simulations of two concrete structures are achieved using AUTODYN-3D, an explicit analysis program, in order to prove the retrofit performance of a GFRP-strengthened RC wall structure.

  • PDF

Strength of RC Beam with Various Shear Reinforcement Ratios After Experiencing Different Duration of Fire Load (다양한 전단보강근비를 가진 RC보의 화재노출시간에 따른 강도변화)

  • Seo, Soo-Yeon;Jeoung, Chae-Myeoung;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.188-197
    • /
    • 2010
  • This paper presents research result to study the change of structural capacity of reinforced concrete beams with various shear reinforcement ratios after damage by fire load. In addition, fundamental data are given in order to predict the strength variation of RC member due to fire damage by evaluating the previous calculation method codified in codes. Nine RC beam specimens were made and exposed to the fire controled by the standard fire curve. And the structural capacity was evaluated through a failure test under simple support condition. Previous code formula, ACI code and Eurocode were reviewed and used for the calculation of the strength of specimens damaged by fire. From the test, RC beam specimens exhibited very brittle failure when it exposed to fire controled by standard fire curve during more than one hour. And this failure pattern tended to be more serious when shear reinforcement ratio decreased or fire loading duration increased. From the evaluation of the calculation process in code, the change of strength due to fire can be properly predicted if the damage of materials is well defined.

Investigation on Behaviors of Concrete Interfaces Repaired Using Anchors (앵커로 보수한 콘크리트 계면 거동의 고찰)

  • Song Hyung-Soo;Lee Chin-Yong;Yoon Dong-Yong;Min Chang-Shik;Choi Dong-Uk
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.885-892
    • /
    • 2005
  • Recently, the damaged concrete structures are often strengthened or repaired using the polymer concrete or the polymer cement mortar. In the repaired concrete structures at early ages, internal stresses could be developed due to the differential drying shrinkage of the repair material. Due to the difference of the thermal coefficients of the repair material and existing concrete, additional stresses also could be developed as the structures are subjected to the ambient temperature changes. Theses environmentally-induced stresses can sometimes be large enough to cause damage to the structures, such as debonding of the interface between the two materials. In this study, a rational procedure was developed where anchors can be designed and installed to prevent damages in such structures by thermally-induced stresses. Finally, through the experimental study and numerical study, the effects of the repair method using anchors with debonding was investigated and discussed the results.

Damage of Overlaid Concrete Structures Subjected In Thermally Transient Condition by Rainfall (강우에 따른 콘크리트 덧씌우기 보수체의 손상에 관한 연구)

  • 윤우현
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.491-498
    • /
    • 2001
  • The failure phenomenon of overlaid concrete structures, such as surface crack and peel-off failure in the contact zone, was investigated due to temperature shock(rainfall). To investigate this failure phenomenon, the surface tensile stress, and the shear stress, the vertical tensile stress in the contact zone were analysed using the non-linear stress-strain relationship of material such as strain-hardening- and strain-softening diagrams. Rainfall intensity, overlay thickness and overlay material were the main variables in the analyses. It is assumed that the initial temperature of overlaid concrete structures was heated up to 55$\^{C}$ by the solar heat. With a rain temperature 10$\^{C}$ and the rainfall intensity of nR=1/a, tR=10min, 60min, the stress states of overlaid concrete structures were calculated. The result shows that only fictitious cracks occurred in the overlay surface and no shear bond failure occurred in the contact zone. The vortical tensile stress increasing with overlay thickness was proved to be the cause of peel-off failure in the contact zone. The formulae for relationship between the vertical tensile stress and overlay thickness, material properties were derived. Using this formulae, it is possible to select proper material and overlay thickness to prevent failure in the contact zone due to temperature shock caused by rainfall.

Assessment of the Damage in High Performance Fiber-Reinforced Cement Composite under Compressive Loading Using Acoustic Emission (AE기법에 의한 압축력을 받는 고인성 섬유보강 시멘트 복합체의 손상 평가)

  • Kim, Sun-Woo;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.589-597
    • /
    • 2009
  • High Performance Fiber-reinforced Cement Composite (HPFRCC) shows the multiple crack and damage tolerance capacity due to the interfacial bonding of the fibers to the cement matrix. For practical application, it is needed to investigate the fractural behavior of HPFRCC and understand the micro-mechanism of cement matrix with reinforcing fiber. This study is devoted to the investigation of the AE signals in HPFRCC under monotonic and cyclic uniaxial compressive loading, and total four series were tested. The major experimental parameters include the type and volume fraction of fiber (PE, PVA, SC), the hybrid type and loading pattern. The test results showed that the damage progress by compressive behavior of the HPFRCC is a characteristic for the hybrid fiber type and volume fraction. It is found from acoustic emission (AE) parameter value, that the second and third compressive load cycles resulted in successive decrease of the amplitude as compared with the first compressive load cycle. Also, the AE Kaiser effect existed in HPFRCC specimens up to 80% of its ultimate strength. These observations suggested that the AE Kaiser effect has good potential to be used as a new tool to monitor the loading history of HPFRCC.

A Review of the Deterioration and Damage of the Top Flange of the Highway PSC Box Girder Bridge based on the Condition Assessment Results (상태평가 결과 기반 고속도로 PSC Box 거더교 상부플랜지 열화·손상 실태 고찰)

  • Ku, Young-Ho;Han, Sang-Mook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.23-32
    • /
    • 2022
  • Although PSCB girder bridges account for 4% of the bridges in use on highways, they do not account for much, but 98% of PSCB girder bridges are 1st type and 2nd type of bridge. Also, the total length of the PSCB girder bridge is 16% (192km) of the total length of the highway bridge. Thus, the PSCB girder bridge can be one of the bridge types where maintenance is important. In order to analyze the damage types of PSCB girder bridges, a detailed analysis was conducted by selecting 62 places (477 spans) precision safety diagnosis reports considering ratio of the construction method and snow removal environment exposure class. Analysis of report and a field investigation was conducted, and as a result, most of the causes of deterioration damage were caused by rainwater (salt water) flowing into the bridge pavement soaking in between the top flange and the interface. After concrete slab deteriorate occurred then bridge pavement cracking and breaking increased and exfoliation of concrete occurred by corrosion and expansion of the reinforcing bars occurred. In addition, the cause of cracks in the longitudinal direction on the bottom of the top flange is considered to be cracks caused by restrained drying shrinkage. In conclusion, for reasonable maintenance considering the characteristics of PSCB girder bridges, it should be suggested in the design aspect that restrained drying shrinkage crack on top flange. Also, it is believed that differentiated maintenance method should be proposed according to snow removal environment exposure class.

Post-Fire Damage and Structural Performance Assessment of a Steel-Concrete Composite Bridge Superstructure Using Fluid-Structure Interaction Fire Analysis (FSI 화재해석을 이용한 강합성 교량 상부구조의 화재 후 손상 및 구조성능 평가)

  • Yun, Sung-Hwan;Gil, Heungbae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.627-635
    • /
    • 2021
  • The fire damage and structural performance of a steel-concrete composite superstructure under a highway bridge exposed to fire loading was evaluated. To enhance the accuracy and efficiency of the numerical analysis, a proposed fluid-structure interaction fire analysis method was implemented in Ansys Fluent and Ansys Mechanical. The temperature distribution and performance evaluation of the steel-concrete composite superstructure according to the vertical distance from the fire source to the bottom flange were evaluated using the proposed analysis method. From the analysis, the temperature of the concrete slab and the bottom flange of the steel-concrete composite superstructure exceeded the critical temperature. Also, when the vertical distance from the fire source was 13 m or greater, the fire damage of the steel-concrete composite superstructure was found to within a safe limit.

Experimental Study on the Gel time of Acryl Gel According to a Catalyzer quantity (촉매제의 양에 따른 아크릴 겔의 겔화시간에 관한 실험적 연구)

  • Han, Sang-Il;Lee, Dae-Geun;Choi, Duck-Jin;Yoon, Kung-Suk;You, Chang-You;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.449-452
    • /
    • 2008
  • Reinforced concrete structure with supplementary relation is a distinguished material. But in this structure, crack is generated by many factors and caused decadence of durability, safety, function, and so on. Hence structure is in need of repair. Preexistence injection of chemical grouting for using repair of crack not enough performance. In this study, Setting time test of Acryl Gel was carried out According to a Catalyzer quantity. The result of test showed that gel time of Acryl Gel decreased with the increased of catalyzer quantity. The result of this study could be used as the basic data for the repair of crack using Acryl Gel.

  • PDF

The Experimental Study on the Heat Hydration Properties of Concrete According to Binder Conditions (결합재 조건에 따른 콘크리트의 수화발열 특성에 관한 연구)

  • Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deuk-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.769-776
    • /
    • 2006
  • Recently, owing to the development of industry and the improvement of building techniques, concrete structures are becoming larger and higher. In hardening of these large connote structures, the heat of hydration gives rise to considerable thermal stress depending on the size and environmental condition of concrete, which might cause thermal cracking. Especially, the crack may cause severe damage to the safety and the durability of concrete structure. This study investigates the thermal properties of concrete according to several binder conditions, such as OPC, Belite rich cement(BRC), slag cement(SC), blast furnace slag(B) added cement fly ash(F) added cement and blast-furnace-slag and fly ash added cement. As a result of this study, the properly of concrete is most better BRC than others, and fly ash(25%) added cement and BFS(35%)-fly ash(15%) added cement gets superior effect in the control of heat hydration. But synthetically considered properties of concrete, workablity, strength heat hydration, etc, it is more effective to use mineral admixture. Especially, to be used Blast Furnace slag is more effective.