• 제목/요약/키워드: 열분해 연료유

검색결과 36건 처리시간 0.02초

바이오에멀젼 연료의 연소 특성 (Combustion Characteristics of Bio Emulsion Fuel)

  • 김문찬
    • 한국응용과학기술학회지
    • /
    • 제35권4호
    • /
    • pp.1421-1432
    • /
    • 2018
  • 본 연구에서는 바이오매스로서 코코넛 폐기물을 $600^{\circ}C$에서 열분해하여 생성된 수상오일(water soluble oil)을 얻었다. 선박유로 사용되는 MDO(Marine Diesel Oil)와 바이오매스로서 코코넛 폐기물을 열분해하여 생성된 수상오일을 MDO에 15~20% 까지 혼합 후 유화시켜 제조된 바이오에멀젼 연료의 연소 특성에 대하여 연구 하였다. 엔진 배출가스 및 온도, 출력을 측정하기 위하여 엔진 다이나모메터를 사용하였다. 바이오에멀젼 연료는 수분이 함유되어 있어서 연소실내의 기화잠열을 빼앗아가 배출가스의 온도를 낮춰주는 것으로 나타났다. 바이오에멀젼 연료에 함유된 수분이 연소실내에서 미세폭발을 일으켜 연료를 잘게 쪼개어 주어 매연을 감소시키는 것으로 나타났다. 바이오에멀젼 연료의 사용으로 연소실내의 온도 감소는 질소산화물 배출을 저감하는 것으로 나타났다. 바이오오일 함유량이 증가 하면 수분함량도 증가하여 전체 발열량이 줄어들게 된다. 따라서 출력이 바이오에멀젼 연료 사용량에 비례하여 감소하는 특성을 나타내었다. 선박용 연료로 사용되는 중질유는 매연과 질소산화물을 많이 배출한다. 선박용 연료로 바이오에멀젼 연료를 사용하면 매연과 질소산화물 배출을 줄여줄 수 있을 것으로 기대된다.

마이크로에멀전의 화염분무열분해(ESP)에 의한 α-알루미나 나노입자의 제조 (Preparation of α-Al2O3 Nanoparticles by flame Spray Pyrolysis (ESP) of Microemulsion)

  • 이상진;전병세
    • 한국세라믹학회지
    • /
    • 제41권3호
    • /
    • pp.242-246
    • /
    • 2004
  • 화염분무열분해(FSP) 공정을 이용하여 결정질의 좁은 입도분포를 가지는 $\alpha$-알루미나 나노입자를 제조하였다. 초미분의 액적을 형성시키기 위해 전구체 용액으로서 연료인 등유를 연속상으로 하고 산화제인 알루미늄 질산염 수용액을 분산상으로 하는 유중수적(W/O)형의 마이크로에멀전을 제조하였다 0.5M 농도의 알루미늄 질산염 수용액을 10vol%, 등유 80vol%, 그리고 유용성 유화제 10vol%를 혼합하여 안정한 분산상태를 가지는 마이크로에멀전을 제조한 후, 이류체 노즐 분무기를 사용하여 0.03㎫의 공기 압력으로 분무하여 화염에 직접 노출시켰다. 제조된 생성물은 20에서 30 나노미터의 균일한 크기를 가지는 $\alpha$-알루미나 상으로 확인되었다.

Induction Parameter Modeling을 이용한 열 분해된 JP-7 연료 /산소 혼합기의 데토네이션 파 해석 (Detonation Wave Simulation of Thermally Cracked JP-7 Fuel/Oxygen Mixture using Induction Parameter Modeling)

  • 조덕래;신재렬;최정열
    • 한국항공우주학회지
    • /
    • 제37권4호
    • /
    • pp.383-391
    • /
    • 2009
  • JP-7/산소 혼합기의 데토네이션 파 특성을 상세 반응 기구로부터 얻은 일 단계 유도 변수 모델을 (IPM) 이용하여 살펴보았다. 탄화수소 혼합기에 대한 상세 화학 반응 모델로 부터 신뢰할 만한 일 단계 반응 모델을 얻기 위한 일반적 과정을 본 연구에서 제시하였다. IPM은 상세 반응 모델 라이브러리로부터 획득한 유도 시간 데이터베이스를 재구성하여 얻었으며, 상세 반응 모델에 의한 결과와 비교하여 확인하였다. 이후 IPM을 유체역학해석 코드에 적용하였으며, 데토네이션 파 전파에 대한 수치해석에 이용하였다. 수치해석 결과는 탄화수소 연료 연소의 상세 반응 기구를 직접 적용해서는 가능하지 않은, JP-7/산소 혼합기의 데토네이션 파 전파 특성의 상세한 특징을 보여주었다.

KIER의 열분해유화 공정 기술과 실증플랜트 소개 (Introduction of KIER Pyrolysis Process and 3,000 ton/yr Demonstration Plant)

  • 신대현;전상구;김광호;이경환;노남선;이기봉
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.479-482
    • /
    • 2008
  • Since late of 2000, KIER has developed a novel pyrolysis process for production of fuel oils from polymer wastes. It could have been possible due to large-scale funding of the Resource Recycling R&D Center. The target was to develop an uncatalyzed, continuous and automatic process producing oils that can be used as a fuel for small-scale industrial boilers. The process development has proceeded in three stages bench-scale unit, pilot plant and demonstration plant. As a result, the demonstration plant having capacity of 3,000 tons/year has been constructed and is currently under test operation for optimization of operation conditions. The process consisted of four parts ; feeding system, cracking reactor, refining system and others. Raw materials were pretreated via shredding and classifying to remove minerals, water, etc. There were 3 kind of products, oils(80%), gas(15%), carbonic residue(5%). The main products i.e. oils were gasoline and diesel. The calorific value of gas has been found to be about 18,000kcal/$m^3$ which is similar to petroleum gas and shows that it could be used as a process fuel. Key technologies adopted in the process are 1) Recirculation of feed for rapid melting and enhancement of fluidity for automatic control of system, 2) Tubular reactor specially-designed for heavy heat flux and prevention of coking, 3)Recirculation of heavy fraction for prevention of wax formation, and 4) continuous removal & re-reaction of sludge for high yield of main product (oil) and minimization of residue. The advantages of the process are full automation, continuous operation, no requirement of catalyst, minimization of coking and sludge problems, maximizing the product(fuel oil) yield and purity, low initial investment and operation costs and environment- friendly process. In this presentation, background of pyrolysis technology development, the details of KIER pyrolysis process flow, key technologies and the performances of the process will be discussed in detail.

  • PDF

석유계 잔사유 기반 음극재 제조 및 그 전기화학적 특성 (Fabrication and the Electrochemical Characteristics of Petroleum Residue-Based Anode Materials)

  • 김대섭;임채훈;김석진;이영석
    • 공업화학
    • /
    • 제33권5호
    • /
    • pp.496-501
    • /
    • 2022
  • 본 연구에서는 석유 정제 부산물인 석유계 잔사유를 이용하여 리튬이차전지용 음극재를 제조하였다. 석유계 잔사유 중 열분해 연료유(pyrolysis fuel oil, PFO), 유동접촉분해 데칸트 오일(fluidized catalyst cracking-decant oil, FCC-DO), 감압잔사유(vacuum residue, VR)를 탄소 전구체로 사용하였다. MALDI-TOF, 원소분석(EA)을 통하여 석유계 잔사유의 물리화학적 특징을 확인하였고, 잔사유로부터 제조된 음극재는 XRD, Raman 등의 분석을 통해 그 구조적 특징을 평가하였다. VR은 PFO 및 FCC-DO에 비하여 광범위한 분자량 분포와 많은 양의 불순물을 함유하는 것을 확인할 수 있었고, PFO와 FCC-DO는 거의 유사한 물리화학적 특징을 나타내었다. XRD 분석결과로부터 탄화된 PFO와 FCC-DO는 유사한 d002값을 나타내었다. 그러나 Lc 및 La값에서는 FCC-DO가 PFO보다 더 발달된 층상구조를 갖는 것으로 확인되었다. 또한, 전기화학적 특성 평가에서는 FCC-DO가 가장 우수한 사이클 특성을 나타내었다. 이러한 석유계 잔사유의 물리화학적, 전기화학적 결과로 미루어 보아 FCC-DO가 PFO와 VR보다 더 우수한 리튬이차전지용 탄소 전구체인 것으로 사료된다.

와전류검사 기술을 적용한 가압중수로 원전 압력관 비파괴검사 (Nondestructive Examination of PHWR Pressure Tube Using Eddy Current Technique)

  • 이희종;최성남;조찬희;유현주;문균영
    • 비파괴검사학회지
    • /
    • 제34권3호
    • /
    • pp.254-259
    • /
    • 2014
  • 중수로 원자로는 한 개의 원자로용기로 구성된 경수로와는 달리 약 380여개의 연료채널(fuel channel)로 구성되어 있다. 연료채널을 구성하는 압력유지 기기인 압력관(pressure tube)은 지르코니움 합금(Zr-2.5wt% Nb) 재질로서 치수는 내경이 103.4 mm, 두께가 약 4.19 mm, 길이가 6.36 m인 튜브 형태의 관이다. 압력관은 내부에 핵연료 다발과 냉각재가 내장되며 압력관의 기능은 연료를 지지하고 열수송 유체인 중수($D_2O$)를 이송한다. 압력관의 단순한 기하학적인 형상으로 인하여 자동화 비파괴검사가 가능하고 접근성이 우수하다. 연료채널은 경수로형 원전과 동일하게 설치전과 운전중에 원자력안전위원회 법령 요건에 따라 주기적으로 엄격한 비파괴검사를 수행하여 건전성을 확인한다. 연료채널의 주기적 비파괴검사에는 초음파탐상 및 와전류탐상검사 기법을 적용한 체적 비파괴검사 기술이 적용된다. 이중에서 와전류탐상검사 기법은 초음파탐상검사에서 검출된 결함의 확인을 위한 보충검사기술로 적용되고 있지만 표면결함에 대한 검출능이 초음파탐상검사 기법보다 우수한 장점을 가지고 있다. 본 논문에서는 압력관 내부 표면 비파괴검사에 적용되고 있는 와전류탐상검사 기술의 압력관 내면에 발생할 수 있는 결함의 검출 및 깊이 측정 특성에 대한 연구결과를 기술하였다. 즉, 와전류검사 기술은 압력관 내면에 발생할 수 있는 아주 미세한 결함을 매우 우수한 분해능으로 검출할 수 있으므로 초음파탐상검사 결과 확인을 위한 보충기술로서 매우 유용하지만, 결함의 깊이 측정은 오차가 매우 크게 발생하므로 결함 깊이 측정에는 적합하지 않고 오직 표면결함 검출에만 적용하는 것이 바람직하다.