• Title/Summary/Keyword: 열부하 분포

Search Result 47, Processing Time 0.021 seconds

The Impact of Nuclear Power Generation on Wholesale Electricity Market Price (원자력발전이 전력가격에 미치는 영향 분석)

  • Jung, Sukwan;Lim, Nara;Won, DooHwan
    • Environmental and Resource Economics Review
    • /
    • v.24 no.4
    • /
    • pp.629-655
    • /
    • 2015
  • Nuclear power generation is a major power source which accounts for more than 30% of domestic electricity generation. Electricity market needs to secure stability of base load. This study aimed at analyzing relationships between nuclear power generation and wholesale electricity price (SMP: System Marginal Price) in Korea. For this we conducted ARDL(Autoregressive Distributed Lag) approach and Granger causality test. We found that in terms of total effects nuclear power supply had a positive relationship with SMP while nuclear capacity had a negative relationship with SMP. There is a unidirectional Granger causality from nuclear power supply to SMP while the reverse was not. Nuclear power is closely related to SMP and provides useful information for decision making.

Study on the properties of temperature distribution at the split-disk geometry glass laser amplifier (분할디스크형 글라스레이저 증폭기의 온도분포특성에 관한 연구)

  • 김병태
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.227-233
    • /
    • 1992
  • The simulation code was developed for the development of the split-disk geometry glass amplifier, which could design the laser apparatus and analyze the properties of the laser system. The flashlamp emission energy at the short wavelength region must be reduced, while maintaining a current density between 2000 and 4000 A/$\textrm{cm}^{2}$, in order to reduce the thermal loading in the laser glass and to raise the coupling efficiency between the emission spectrum of the flashlamps and the absorption spectrum of the laser glass. By cutting the laser glass into three equal pieces, the temperature rise in the laser glass dropped by 70% due to the efficient removal of the heat in the laser glass. It was found that the $Nd^{3+}$ doping rate of each laser glass should be properly selected and the optimum value of the product of the absorption coefficient $\alpha$ and the thickness d of the laser glass is about 0.26 in the split-disk geometry.

  • PDF

Performance Simulation of Motorcycle Engine Exhaust Heat Recovery System using Thermoelectric Element (열전소자를 이용한 모터사이클용 엔진 배기 폐열 회수 시스템 성능 해석)

  • Lee, Moo-Yeon;Kim, Kihyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.695-701
    • /
    • 2018
  • Research into exhaust heat recovery has been actively carried out to improve the thermal efficiency of internal combustion engines. In this study, the performance of thermoelectric generation from exhaust heat recovery for motorcycle engines was analyzed by 1-D thermo-fluid simulation. GT-SUITE, which was developed by Gamma Tech., was used for the simulation of the internal combustion engine and thermoelectric generation system. The basic performance of the engine was analyzed in the range of engine speed of 1000~7000 rpm and engine load of 0~100%. The ratio of exhaust heat energy to fuel chemical energy was found to be about 40~60%. A combined simulation of the engine model and thermoelectric generation model was carried out to analyze the voltage, current and power generated by the thermoelectric material. The generation characteristics of the thermoelectric material was dominantly affected by the exhaust gas temperature. The maximum generated power of the current thermoelectric generation system was found to be about 2.2% of the total exhaust heat energy. The design optimization of the thermoelectric generation system will be carried out to maximize its power generation and economic feasibility.

Thermal Performance of Wooden Building Envelope by Thermal Conductivity of Structural Members (목조건축물 구조부재의 열전도율에 따른 건물외피의 단열 성능)

  • Kim, Sughwan;Yu, Seulgi;Seo, Jungki;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.515-527
    • /
    • 2013
  • Building energy simulations which are mainly used in Korea have evaluated the building energy performance with the different thermal conductivity of construction materials. In order to evaluate the energy consumption accurately, the difference in thermal conductivity of the wood used in stud for wooden structure was confirmed from the each simulation. In addition, the thermal transmission of building members and the thermal bridge at the conjunction of building members according to thermal conductivity from each simulation programs were researched. The thermal conductivity of pine that has the largest variation among the energy simulations was applied to the thermal properties of studs in wooden structure. The maximum error between the maximum and minimum thermal transmission of roof, wall, and floor slab was $0.023W/m^2{\cdot}K$. Plus, that thermal bridge at Rafter junction on the roof, roof-wall joint, and floor slab-wall joint was $0.025W/m{\cdot}K$. The heat transfer image for changes in temperature and the heat exchange were analyzed by HEAT2 program. The distorted temperature lines were found around the insufficient insulated connection parts. It was predicted that the temperature at the distorted parts in the analyzed image was lower than that of the other portion of the other structures.

Building Wind Corridor Network Using Roughness Length (거칠기길이를 이용한 바람통로 네트워크 구축)

  • An, Seung Man;Lee, Kyoo-Seock;Yi, Chaeyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.101-113
    • /
    • 2015
  • The purpose of this study is increasing ventilation network usability for urban green space planning by enhancing its practicality and detail. A ventilation network feature extraction technique using roughness length($z_0$) was proposed. Continuously surfaced DZoMs generated from $z_0$(cadastral unit) using three interpolations(IDW, Spline, and Kriging) were compared to choose the most suitable interpolation method. Ventilation network features were extracted using the most suitable interpolation technique and studied with land cover and land surface temperature by spatial overlay comparison. Results show Kriging is most suitable for DZoM and feature extraction in comparison with IDW and Spline. Kriging based features are well fit to the land surface temperature(Landsat-7 ETM+) on summer and winter nights. Noteworthy is that the produced ventilation network appears to mitigate urban heat loads at night. The practical use of proposed ventilation network features are highly expected for urban green space planning, though strict validation and enhancement should follow. (1) $z_0$ enhancement, (2) additional ventilation network interpretation and editing, (3) linking disconnected ventilation network features, and (4) associated dataset enhancement with data integrity should technically preceded to enhance the applicability of a ventilation network for green space planning. The study domain will be expanded to the Seoul metropolitan area to apply the proposed ventilation network to green space planning practice.

Effect of Latent Heat Material Placement on Inside Temperature Uniformity of Insulated Transfer Boxes (단열용기의 잠열재 배치에 따른 내부 온도 균일성에 대한 영향)

  • HyungYong Ji;Dong-Yeol Chung;Seuk Cheun Choi;Joeng-Yeol Kim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • An optimized design of the transportation insulated box must be considered to control the thermal damage in order to maintain the fresh condition for temperature-sensitive medicine and frozen food safety. The inside temperature of the insulated box is a natural convection enclosure state, thermal stratification naturally occurs as time passes in case of with outside heat load. The latent heat material (LHM) placement inside the box maintains the target temperature of the product for temperature fluctuations during transport, and LHM application is a common and efficient method. In this work, inside temperature stratification in an insulated box depending on the LHM pack position is numerically simulated and experimented. The insulated box is made up of vacuum insulation panel (VIP), and LHM modules are placed over six faces inside the box, with the same weight. The temperature curves for 72 hrs as experiment results clearly show the temperature stratification in the upper, middle, and lower at the LHM melting time region. However, the temperature stratification state is uniformly changed in accordance with the condition of the upper and lower placement weight of the LHM pack. And also, the temperature uniformity by changed placement weight of LHM has an effect on maintaining time for target air temperature inside the box. These results provide information on the optimized design of the insulated box with LHM.

Voluntary Motor Control Change after Gait Training in Patients with Spinal Cord Injury (척수신경손상 환자의 보행훈련 전.후의 능동적 근육제어의 변화)

  • 임현균;이동철;이영신;셔우드아더
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 2003
  • In this study, muscle activity was measured using surface EMG (sEMG) during a voluntary maneuver (ankle dorsiflexion) in the supine position was compared pre and post gait training. Nine patients with incomplete spinal cord injury participated in a supported treadmill ambulation training (STAT), twenty minutes a day, five days a week for three months. Two tests, a gait speed test and a voluntary maneuver test, were made the same day, or at least the same week, pre and post gait training. Ten healthy subjects' data recorded using the same voluntary maneuvers were used for the reference. sEMG measured from ten lower limb muscles was used to observe the two features of amplitude and motor control distribution pattern, named response vector. The result showed that the average gait speed of patients increased significantly (p〈0.1) from 0.47$\pm$0.35 m/s to 0.68$\pm$0.52 m/s. In sEMG analysis, six out of nine patients showed a tendency to increase the right tibialis anterior activity during right ankle dorsiflexion from 109.7$\pm$148.5 $mutextrm{V}$ to 145.9$\pm$180.7 $mutextrm{V}$ but it was not significant (p〈0.055). In addition, only two patients showed increase of correlation coefficient and total muscle activity in the left fide during left dorsiflexion. Patients' muscle activity changes after gait training varied individually and generally depended on their muscle control abilities of the pre-STAT status. Response vector being introduced for quantitative analysis showed good Possibility to anticipate. evaluate, and/or guide patients with SCI, before and after gait training.