• Title/Summary/Keyword: 열배출기

Search Result 147, Processing Time 0.03 seconds

The Continuous Pyrolysis of Waste Polystyrene using Wetted-Wall Type Reactor (Wetted-Wall Column 형 반응기를 이용한 폐 EPS 연속 열분해반응)

  • Han, Myung Sook;Han, Myung Wan;Yoon, Byung Tae;Kim, Seong Bo;Choi, Myoung Jae
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.396-399
    • /
    • 2007
  • Organic residue and carbonized solid producing from the thermal degradation gave a influence on oil conversion, formation of styrene and side products such as ${\alpha}-methyl$ styrene, ethyl benzene, dimer. Thus, new reaction system using wetted-wall type reactor was proposed and examined on influence of various parameters such as reaction temperature, feeding rate and removal velocity of formed vapor. Optimum condition were obtained from continuous thermal degradation using wetted-wall type reactor and styrene was continuously obtained as the yield up 65%.

Experimental Research on an Organic Rankine Cycle Using Engine Exhaust Gas (엔진 배기열 이용 유기랭킨사이클에 대한 실험적 연구)

  • Shin, Dong Gil
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.393-397
    • /
    • 2012
  • In this study, an organic Rankine cycle(ORC) for gas engine waste heat recovery for industry has been constructed and a performance analysis test has been carried out. Shell & tube style heat exchanger has been equipped on an engine exhaust manifold in order to absorb heat of engine exhaust gas into the working fluid(refrigerant R134a). Under 60 kW of engine power output, about 63 kW of engine exhaust gas heat was discharged and the proportion of heat recovered was 68~73% while 43~46 kW of heat was absorbed into working fluid. Consequently rated power output of ORC was 4.6 kW while the ratio of rated power output to engine exhaust gas heat was 7.3%.

Modification of GGH Leakage Evaluation Equations in Wet FGD System (습식 배연탈황공정에서 GGH 누설률 평가식의 수정)

  • 천성남;안영모;장경룡
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.387-388
    • /
    • 2003
  • 습식 배연탈황 공정에서는 흡수탑 내에서의 황산화물 흡수율을 높일 목적으로 흡수탑으로 유입되는 배기가스를 약 5$0^{\circ}C$까지 냉각하고, 처리된 배기가스는 연돌에서의 자연 통풍력을 확보하고 연돌 배출 후 수분의 응축으로 인한 백연(white Plume)의 문제를 방지하고자 통상 9$0^{\circ}C$ 이상으로 가온하는 것이 일반적이며 이를 위해 다양한 형식의 열교환기가 설치 운영되고 있다. 탈황공정에서 흔히 GGH(gas to gas heater)라 불리는 Ljungstrom 방식의 열 교환기는 미처리된 고온가스와 처리된 저온 가스가 회전하는 열교환소자로 이루어진 영역을 지나면서 열 교환이 이루어지는 형태로 회전 부위 및 두 가스흐름의 구분 판(sector plate) 등에서 필연적으로 처리가스 흐름 중으로 미처리 가스의 누입이 일어나게 된다. (중략)

  • PDF

Kinetics of the Low-temperature Pyrolysis of Mixed Plastics in the Batch Reactor (회분식반응기에서의 혼합 플라스틱의 저온열분해 kinetics)

  • Cha, Wang Seog;Oh, Myung Seog;Jang, Hyun Tae;Tae, Beomseok
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.540-544
    • /
    • 2008
  • Pyrolytic characteristics of mixed plastics containing 22 wt.% HDPE, 17 wt.% LDPE, 27 wt.% PP, 12 wt.% PS, 16 wt.% ABS, 6 wt.% PVC have been studied in the batch-type microreactor of stainless steel. Thermal degradation experiments were performed at temperature of $410{\sim}450^{\circ}C$. The yield of each pyrolytic products were obtained by the weight measurement and molecular weight distribution of pyrolytic liquid products determined by the GC-SIMDIS method. It was shown that the yield and molecular weight of pyrolytic liquid product were decreased with the increase of reaction temperature and time. It was know that 20wt% of PVC composing of the mixed plastics was converted to the gas products of chloride during the pyrolysis process. The chain-end scission rate parameter was determined to be 50.2 kcal/mole of mixed plastics by the Arrhenius plot.

Development of Hybrid/Dual Jet Combustor for a MGT (Part I: Experimental Study on Geometric Optimization) (마이크로 가스터빈용 하이브리드/이중 선회제트 연소기 개발 (Part I: 형상 최적화를 위한 실험연구))

  • Park, Tae-Joon;Hwang, Cheol-Hong;Lee, Kee-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.60-69
    • /
    • 2013
  • An optimum configuration of the hybrid/dual swirl jet combustor for a micro-gas turbine was investigated experimentally. Location of pilot nozzle, angle and direction of swirler vane were varied systematically as main parameters under the conditions of constant thermal load. The results showed that the variation in locations of inner fuel nozzle and pilot burner resulted in significant change in flame shape and swirl intensity due to the changes in recirculating flow pattern and minimum flow area near burner exit, in particular, with the significant reduction of CO emission near lean-flammability limit. In addition, it was observed that the co-swirl configuration produced less CO and NOx emissions compared to the counter-swirl configuration.

Effect of Inlet Shape on Thermal Flow Characteristics for Waste Gas in a Thermal Decomposition Reactor of Scrubber System (반도체 폐가스 처리용 열분해반응기의 입구형상이 열유동 특성에 미치는 영향에 관한 수치해석 연구)

  • Yoon, Jonghyuk;Kim, Youngbae;Song, Hyungwoon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.510-518
    • /
    • 2018
  • Recently, lots of interests have been concentrated on the scrubber system that abates waste gases produced from semiconductor manufacturing processes. An effective design of the thermal decomposition reactor inside a scrubber system is significantly important since it is directly related to the removal performance of pollutants and overall stabilities. In the present study, a computational fluid dynamics (CFD) analysis was conducted to figure out the thermal and flow characteristics inside the reactor of wet scrubber. In order to verify the numerical method, the temperature at several monitoring points was compared to that of experimental results. Average error rates of 1.27~2.27% between both the results were achieved, and numerical results of the temperature distribution were in good agreement with the experimental data. By using the validated numerical method, the effect of the reactor geometry on the heat transfer rate was also taken into consideration. From the result, it was observed that the flow and temperature uniformity were significantly improved. Overall, our current study could provide useful information to identify the fluid behavior and thermal performance for various scrubber systems.

한국의 기후학 반세기:회고와 전망

  • 이현영
    • Journal of the Korean Geographical Society
    • /
    • v.31 no.2
    • /
    • pp.128-137
    • /
    • 1996
  • 한국의 기후학 연구성과는 1958년 발표된 이후 약간의 기복은 있었으나 꾸준히 발 전하여 왔다. 연구성과를 하부 분야별로 보면 기후학 일반(43.5%)이 가장 많았고, 종관기후 학(34.7%), 기후변화(13.0%) 그리고 응용기후학(8.8%)으로 구성되어 있으나 근래에는 응용 기후학 분야에 대한 연구가 서서히 증가하고 있다. 1970년대 이전에는 주로 지상 기후요소 간의 기상자료를 사용하여 상관관계 출현빈도.시계열분석 등으로 전국 규모의 기후특성을 규명한 데 반하여 최근에는 시계열분석과 더불어 군집.주성분.인자분석 등 다변량 분석기 법 등의 통계기법이 많이 활용되고 있다. 초기에는 지상기상자료를 주로 연구에 사용하였는 데 점차 고층기상자료와 인공위성자료를 활용하면서 국지기후 연구와 더불어 기후예측 모델 의 구축단계까지 발달하였다. 그러나 한국기후학이 당면한 문제는 인적자원의 절대적인 빈 곤과 더불어 인접분야에 비하여 연구환경이 열악한 것이다. 즉, 대학에서는 비전공자에 의한 기후학 교육이 빈번하고, 국지기후 연구의 경우는 실측을 요하기도 하는데 자료의 생성 및 분석에 필요한 장비가 절대적으로 부족하다. 따라서 한국의 기후학의 발전을 도모하려면 기 후학자의 배출이 급선무이고, 기후학자는 물론, 대학 및 연구소간의 연구 및 자료 교류 등의 상호협조가 요청된다.

  • PDF

Carbon Dioxide-based Plastic Pyrolysis for Hydrogen Production Process: Sustainable Recycling of Waste Fishing Nets (이산화탄소 기반 플라스틱 열분해 수소 생산 공정: 지속가능한 폐어망 재활용)

  • Yurim Kim;Seulgi Lee;Sungyup Jung;Jaewon Lee;Hyungtae Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.36-43
    • /
    • 2024
  • Fishing net waste (FNW) constitutes over half of all marine plastic waste and is a major contributor to the degradation of marine ecosystems. While current treatment options for FNW include incineration, landfilling, and mechanical recycling, these methods often result in low-value products and pollutant emissions. Importantly, FNWs, comprised of plastic polymers, can be converted into valuable resources like syngas and pyrolysis oil through pyrolysis. Thus, this study presents a process for generating high-purity hydrogen (H2) by catalytically pyrolyzing FNW in a CO2 environment. The proposed process comprises of three stages: First, the pretreated FNW undergoes Ni/SiO2 catalytic pyrolysis under CO2 conditions to produce syngas and pyrolysis oil. Second, the produced pyrolysis oil is incinerated and repurposed as an energy source for the pyrolysis reaction. Lastly, the syngas is transformed into high-purity H2 via the Water-Gas-Shift (WGS) reaction and Pressure Swing Adsorption (PSA). This study compares the results of the proposed process with those of traditional pyrolysis conducted under N2 conditions. Simulation results show that pyrolyzing 500 kg/h of FNW produced 2.933 kmol/h of high-purity H2 under N2 conditions and 3.605 kmol/h of high-purity H2 under CO2 conditions. Furthermore, pyrolysis under CO2 conditions improved CO production, increasing H2 output. Additionally, the CO2 emissions were reduced by 89.8% compared to N2 conditions due to the capture and utilization of CO2 released during the process. Therefore, the proposed process under CO2 conditions can efficiently recycle FNW and generate eco-friendly hydrogen product.

Preliminary Design of LEO Satellite Propulsion System (저궤도위성 추진시스템 예비 설계)

  • Yu, Myeong-Jong;Lee, Gyun-Ho;Kim, Su-Gyeom;Choe, Jun-Min
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.85-89
    • /
    • 2006
  • Propulsion System provides the required velocity change impulse for orbit transfer from parking orbit to mission orbit and three-axis vehicle attitude control impulse. New LEO Satellite propulsion system (PS) will be an all-welded, monopropellant hydrazine system. The PS consists of the subassemblies and components such as Thrusters, Propellant Tank, Pressure Transducer, Propellant Filter, Latching Isolation Valves, Fill/Drain Valves, interconnecting propellant line assembly, and thermal hardwares for operation-environment control of the PS. In this study, preliminary design process of LEO Satellite propulsion system will be summarized.

  • PDF

A Study on the Application of Ventilation Equipment in an Underground Fire (지하공간 화재시 배연장비의 활용에 관한 연구)

  • Lee, Sung-Ryong;Han, Dong-Hoon
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.92-96
    • /
    • 2010
  • In this study, experiments were conducted to evaluate the effectiveness of ventilation equipment in underground fires. Two type of Ventilators were used in experiments. Experiments were carried out using ethanol square pool fire. Maximum heat release rate was about 460kW. Visibility and temperature distribution were evaluated according to mechanical ventilation. In blower type ventilation, visibility was increased and temperature was lowered.