• Title/Summary/Keyword: 열개

Search Result 75, Processing Time 0.023 seconds

Embryology of Gymnospermium microrrhynchum (Berberidaceae) (한계령풀의 생식기관 발생형태)

  • Ghimire, Balkrishna;Shin, Dong-Yong;Heo, Kweon
    • Korean Journal of Plant Taxonomy
    • /
    • v.40 no.4
    • /
    • pp.226-233
    • /
    • 2010
  • An intensive study of the embryology of Gymnospermium microrrhynchum was conducted to provide information regarding a discussion of the phylogenetic relationships of the genus, which is yet unstudied. Our results indicated that Gymnospermium is similar to other genera of Berberidaceae in terms of its embryological features. Nevertheless, newly reported and unique features are the well-developed endothelium and the undifferentiated seed coat type. Until the study of Gymnospermium, it may have been considered to be closer to Caulophyllum and Leontice in the tribe Leonticeae. These three genera share many morphological features as well as molecular similarities, by which they are kept in the same tribe, Leonticeae. However, very little detailed embryological data regarding these genera have been published thus far. Gymnospermium was characterized according to the basic type of anther wall formation as well as its glandular tapetum, successive cytokinesis in the microspore mother cell, two-celled mature pollen grains, anatropous and crassinucellate ovules with a nucellar cap, well-developed endothelium, its Polygonum type of embryo sac formation, its nuclear type of endosperm formation, and its undifferentiated seed coat type. In comparison with Nandina, there are many differences, such as the dehiscence of the anther, the cytokinesis in the microspore mother cells, the shape of the megaspore dyad, and the seed characteristics. Although we had no available detailed embryological information regarding Caulophyllum and Leontice, which are genera that are more closely related to Gymnospermium, we could deduce from the phylogenetic relationship that Gymnospermium, Caulophyllum, and Leontice are more closely related to each other than other genera of Berberidaceae on the basis of the seed characteristics.

Jiri Mountain, Korea : A Window into the Deep Crust (지리산 : 지각 깊은 곳을 들여다보는 창문)

  • Song, Yong-Sun;Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.385-398
    • /
    • 2017
  • Jiri Mountain lies in the southwestern portion of the Yeongnam massif, which is one of the Precambrian basement massifs of the Korean Peninsular, consisting essentially of high-grade metamorphic rocks. The geology of the area mainly consists of Paleoproterozoic metasedimentary migmatitic gneisses, granitic gneisses which are classified into granitic gneiss, (K-feldspar porphyroblastic) granitic gneiss and quartzo-feldspathic gneiss, charnockite and anorthosite based on their occurrence and petrographic characteristics. The ages obtained from these rocks mainly span a narrow range between ca. 1,876 and 1,856 Ma although inherited cores of zircons from massive granite gneiss yielded much older age spectrum (>2,029 Ma). The age of major metamorphism is ca. 1850-1840 Ma and the metamorphic condition obtained from mineral assemblages and geothermobarometers is about 4-6 kb and up to $700-750^{\circ}C$. These results indicate that in the area intense granitic magmatism and metamorphism occurred in the deep crust during Paleoproterozoic orogeny. Some younger age of charnockite (1,856-1,865 Ma) and anorthosite (1,861-1,862 Ma) might indicate the beginning of intraplate rifting leading to felsic and mafic magmatism just after the orogeny. In conclusion, the rocks in the Jiri Mountain area which formed at a mid to deep crustal zone provide us windows into the deep crust.

Three key factors for successful esthetic anterior implant restoration (성공적인 전치부 심미 임플란트를 위한 3가지 요소)

  • Lim, Pil
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.35-49
    • /
    • 2016
  • With the increasing demand for aesthetic implant dentistry, the importance of implant restoration is emphasized not only in the functional aspect but also in the aesthetic aspect. The aesthetic restoration of dental implants in the anterior maxilla is a challenge for clinicians because it requires proper harmony in three following conditions; reconstruction of hard tissue, soft tissue, and aesthetic prosthesis. The soft tissue aesthetics are dependent upon the condition of the supporting hard tissue because the osseous structure provides a framework for the development of a healthy and aesthetic soft tissue interface. Therefore, the augmentation of hard tissue is a first step and especially, optimal 3-dimensional position of implant is the most important factor in aesthetic implant restoration. The management of soft tissue is a second step, and the final step is a restoration of harmonic prosthesis using provisional restoration with proper emergence profile. This clinical report describes the procedure of bone augmentation in labial dehiscence defect, Vascularized Interpositional Periosteal-Connective Tissue (VIP-CT) flap for aesthetic anterior soft tissue, and the importance of provisional restoration and impression taking stage with customized impression coping.

The Effect of Cone Protective Net and the Morphological Variation of Cone and Seed of Korea Rare Endemic Pinus pumila Regel (희귀수종 눈잣나무의 구과보호망 효과 및 구과와 종자의 형태적 변이)

  • Song, Jeong-Ho;Lim, Hyo-In;Jang, Kyung-Hwan;Kim, Du-Hyun;Son, Jang-Ick
    • Korean Journal of Plant Resources
    • /
    • v.25 no.4
    • /
    • pp.401-406
    • /
    • 2012
  • This study was conducted to investigate the effect of cone protective net and the variation of cone and seed characteristics of a unique and rare dwarf stone pine (Pinus pumila Regel) population in Mt. Seorak which is in the southern peripheral of South Korea. Iron protective net (50 mesh, 25 ${\times}$ 25 cm) was effective in reducing birds and rodents damage to conelet, thereby it was possible to safely collect seed genetic resources. Early July was observed to be the most appropriate season to cover conelet with Iron protective net. P. pumila have ovoid-triangle shaped, wingless seeds and indehiscent cones, seeds dissemination is mainly by the hoarding behavior of nutcrackers and rodents. Statistical analysis showed that there were significant differences among individuals within population, and the mean characteristics of the species were 35.3 mm, 25.6 mm, 1.38, 6.6 g and 39.3 ea in the cone length, cone width, cone index, cone weight and in number of seeds per cone, respectively. Coefficients of variations in seed weight and number of seeds per cone were relatively high (21.7%, 21.5%, respectively) compared to other traits. Based on the correlation analysis between cone characteristics and seed characteristics, the length of cone and seed showed a significant positive correlation with the seed size and the seed weight, but the width and thickness of seed showed a negative correlation with the number of seeds per cone.

Numerical Modeling of Shear Heating in 2D Elastoplastic Extensional Lithosphere using COMSOL Multiphysics® (콤솔 멀티피직스를 이용한 2차원 탄소성 인장 암석권 모형에서 발생하는 전단열에 관한 수치 모사 연구)

  • Jo, Taehwan;So, Byung-Dal
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • In the development of geodynamic structures such as subduction and rift zones, a weakening mechanism is essential for localized weak zone formation in the lithosphere. Shear heating, a weakening mechanism, generates short-wavelength temperature elevation in the lithosphere; the increased temperature can reduce lithospheric strength and promote its breakup. A two-dimensional elastoplastic extensional basin model was used to conduct benchmarking based on previous numerical simulation studies to quantitatively analyze shear heating. The amount of shear heating was investigated by controlling the yield strength, extensional velocity, and strain- and temperature-dependent weakening. In the absence of the weakening mechanism, the higher yield strength and extensional velocity led to more vigorous shear heating. The reference model with a 100-MPa yield strength and 2-cm/year extension showed a temperature increase of ~ 50 K when the bulk extension was 20 km (i.e., 0.025 strain). However, in the yield-strength weakening mechanism, depending on the plastic strain and temperature, more efficient weakening induced stronger shear heating, which indicates positive feedback between the weakening mechanism and the shear heating. The rate of shear heating rapidly increased at the initial stage of deformation, and the rate decreased by 80% as the lithosphere weakened. This suggests that shear heating with the weakening mechanism can significantly influence the strength of relatively undamaged lithosphere.

Literature review on fractography of dental ceramics (치과용 세라믹의 파단면분석(fractography)에 대한 문헌고찰)

  • Song, Min-Gyu;Cha, Min-Sang;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.3
    • /
    • pp.138-149
    • /
    • 2022
  • The clinical applicability of ceramics can be increased by analyzing the causes of fractures after fracture testing of dental ceramics. Fractography to analyze the cause of fracture of dental ceramics is being widely applied with the development of imaging technologies such as scanning electron microscopy. Setting the experimental conditions is important for accurate interpretation. The fractured specimens should be stored and cleaned to avoid contamination, and metal pretreatment is required for better observation. Depending on the type of fracture, there are dimple rupture, cleavage, and decohesive rupture mainly observed in metals, and fatigue fractures and conchoidal fractures observed in ceramics. In order to reproduce fatigue fracture in the laboratory, which is the main cause of fracture of ceramics, a dynamic loading for observing slow crack growth is essential, and the load conditions and number of loads must be appropriately set. A typical characteristic of a fracture surface of ceramic is a hackle, and the causes of fracture vary depending on the shape of hackle. Fractography is a useful method for in-depth understanding of fractures of dental ceramics, so it is necessary to follow the exact experimental procedure and interpret the results with caution.

New record and prediction of the potential distribution of the invasive alien species Brassica tournefortii (Brassicaceae) in Korea (국내 침입외래식물 사막갓(Brassica tournefortii; Brassicaceae)의 보고 및 잠재 분포 예측)

  • KANG, Eun Su;KIM, Han Gyeol;NAM, Myoung Ja;CHOI, Mi Jung;SON, Dong Chan
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.3
    • /
    • pp.184-195
    • /
    • 2022
  • The invasive alien species Brassica tournefortii Gouan (Brassicaceae) is herein reported for the first time in Korea, from Gunsan-si, Gochang-gun, and Jeju-si. Brassica tournefortii can easily be distinguished from B. juncea and B. napus by its dense stiff hairs at the base of the stem and leaves, basally and distally branched stems, partially dehiscent fruits, and seeds that become mucilaginous in the presence of moisture. Although some taxonomists have classified this species as belonging to Coincya Rouy based on its fruit and seed characteristics, the existence of one vein on the fruit valves and our maximum likelihood analysis using internal transcribed spacer sequences placed it in Brassica. Distribution data, photographs, and a description of B. tournefortii are presented herein. Moreover, potential changes in the distribution of B. tournefortii were predicted under different climate scenarios, but our analysis showed that the probability of the spreading of this species is low. Nevertheless, continuous monitoring is necessary for an accurate assessment. The results of the present study can be used to conduct an invasion risk assessment and can assist with the effective management of this invasive alien species.

Stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas (황해 및 인접 지역 퇴적분지들의 구조적 진화에 따른 층서)

  • Ryo In Chang;Kim Boo Yang;Kwak won Jun;Kim Gi Hyoun;Park Se Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.8 no.1_2 s.9
    • /
    • pp.1-43
    • /
    • 2000
  • A comparison study for understanding a stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas was carried out by using an integrated stratigraphic technology. As an interim result, we propose a stratigraphic framework that allows temporal and spatial correlation of the sedimentary successions in the basins. This stratigraphic framework will use as a new stratigraphic paradigm for hydrocarbon exploration in the Yellow Sea and adjacent areas. Integrated stratigraphic analysis in conjunction with sequence-keyed biostratigraphy allows us to define nine stratigraphic units in the basins: Cambro-Ordovician, Carboniferous-Triassic, early to middle Jurassic, late Jurassic-early Cretaceous, late Cretaceous, Paleocene-Eocene, Oligocene, early Miocene, and middle Miocene-Pliocene. They are tectono-stratigraphic units that provide time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of sedimentary basins in the Yellow Sea and adjacent area. In the Paleozoic, the South Yellow Sea basin was initiated as a marginal sag basin in the northern margin of the South China Block. Siliciclastic and carbonate sediments were deposited in the basin, showing cyclic fashions due to relative sea-level fluctuations. During the Devonian, however, the basin was once uplifted and deformed due to the Caledonian Orogeny, which resulted in an unconformity between the Cambro-Ordovician and the Carboniferous-Triassic units. The second orogenic event, Indosinian Orogeny, occurred in the late Permian-late Triassic, when the North China block began to collide with the South China block. Collision of the North and South China blocks produced the Qinling-Dabie-Sulu-Imjin foldbelts and led to the uplift and deformation of the Paleozoic strata. Subsequent rapid subsidence of the foreland parallel to the foldbelts formed the Bohai and the West Korean Bay basins where infilled with the early to middle Jurassic molasse sediments. Also Piggyback basins locally developed along the thrust. The later intensive Yanshanian (first) Orogeny modified these foreland and Piggyback basins in the late Jurassic. The South Yellow Sea basin, however, was likely to be a continental interior sag basin during the early to middle Jurassic. The early to middle Jurassic unit in the South Yellow Sea basin is characterized by fluvial to lacustrine sandstone and shale with a thick basal quartz conglomerate that contains well-sorted and well-rounded gravels. Meanwhile, the Tan-Lu fault system underwent a sinistrai strike-slip wrench movement in the late Triassic and continued into the Jurassic and Cretaceous until the early Tertiary. In the late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of the Tan-Lu fault until the late Eocene caused a megashear in the South Yellow Sea basin, forming a large-scale pull-apart basin. However, the Bohai basin was uplifted and severely modified during this period. h pronounced Yanshanian Orogeny (second and third) was marked by the unconformity between the early Cretaceous and late Eocene in the Bohai basin. In the late Eocene, the Indian Plate began to collide with the Eurasian Plate, forming a megasuture zone. This orogenic event, namely the Himalayan Orogeny, was probably responsible for the change of motion of the Tan-Lu fault system from left-lateral to right-lateral. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the South Yellow Sea basin and the pull-apart opening of the Bohai basin. Thus, the Oligocene was the main period of sedimentation in the Bohai basin as well as severe tectonic modification of the South Yellow Sea basin. After the Oligocene, the Yellow Sea and Bohai basins have maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basins.

  • PDF

Muti-variable Sequence Stratigraphic Model and its Application to Shelf-Slope System of the Southwestern Ulleung Basin Margin (다중변수 순차층서 모델 개발을 통한 울릉분지 남서부 대륙주변부의 층서연구)

  • Yoon Seok Hoon;Park Se Jin;Chough Sung Kwun
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.36-47
    • /
    • 1997
  • This study presents multi-variable sequence model for a broader application of sequence concept proposed by Exxon group. The concept of the multi-variable model is based on the fact that internal organization and boundary type of the sequences are determined by three varying factors including 3rd-order cycles of eustasy, and tectonic movement and sediment influx with 2nd-order changes. Instead of Exxon group's systems tracts, this model adopts parasequence sets as the fundamental building blocks of the sequence, because they are descriptive stratigraphic units simply defined by internal stacking pattern, reflecting interactions of accommodation and sediment influx. Seven sequence types which vary in number and type of internal parasequence sets are formulated as associations of four types of accommodation development and three grades of sediment influx. In the southwestern margin of Ulleung Basin, the multi-variable sequence analysis of shelf-slope sequence shows systematic changes in stratal patterns and the numbs, of constituent parasequence sets (i.e. sequence type). These changes are interpreted to reflect temporal and spatial changes in type and rate of tectonic movement and sediment influx, as a result of back-arc opening and closing. During the back-arc opening, rapid subsidence, continuous rise of relative sea level, and high sediment influx gave rise to sequences dominantly of single progradational parasequence set. In the early stage of back-arc closing accompanied by local contractional deformation, different types of sequences contemporaneously formed depending on the spatial changes in tectonically-controlled accommodation and influx rates. During the subsequent slow back-arc subsidence, rise-dominated relative sea-level cycle was coupled with moderate to high sedimentation rate to have resulted in sequences consisting of $2~3$ parasequence sets.

  • PDF

Analysis of Hydrocarbon Trap in the Southwestern Margin of the Ulleung Basin, East Sea (동해 울릉분지 남서주변부의 탄화수소 트랩 분석)

  • Lee, Minwoo;Kang, Moo-Hee;Yoon, Youngho;Yi, Bo-Yeon;Kim, Kyong-O;Kim, Jinho;Park, Myong-ho;Lee, Keumsuk
    • Economic and Environmental Geology
    • /
    • v.48 no.4
    • /
    • pp.301-312
    • /
    • 2015
  • A commercial gas field was found in the southwestern continental shelf of the Ulleung Basin, East Sea in the late 1990s. To develop additional gas field, an exploration well was drilled through the coarse infill of submarine canyon near the gas field, but it was uneconomic to develop hydrocarbons. Using newly acquired deep seismic reflection and previous well data, we have identified additional geological structure which has hydrocarbon potentials below submarine canyons in the southwestern margin of the basin. Based on the interpretation of the deep seismic reflection and well data, the sequences of the study area can be classified into the syn-rift megasequence(MS1), post-rift megasequence(MS2), syn-compressional megasequence(MS3), and post-compressional megasequence(MS4) in relation to the tectonic events. MS1, deposited simultaneously with the basin formation before the middle Miocene, is characterized by chaotic seismic facies with low- to moderate-amplitude and low frequency reflections. MS2 comprises laterally continuous, low- to moderate-amplitude reflections, showing progradational stacking patterns due to high rates of sediment supply during basin expansion in the middle Miocene. MS3 is mainly composed of continuous reflections with high amplitude and moderate- to high-frequency which are interpreted as coarse-grained sediments. The coarse-grained sediments of MS3 sequence is widely truncated by several submarine canyons which filled with fine-grained sediment of MS4 to form a stratigraphic trap of hydrocarbon. Therefore, the reservoir and seal of the hydrocarbon trap in the study area are coarse-grained sediment of MS3 and submarine canyon filled with fine-grained sediment of MS4, respectively. A flat-spot seismic anomaly, which may indicate the presence of hydrocarbon, is observed within the stratigraphic trap.