Annual average daily traffic(AADT) serves as important basic data in the transportation sector. AADT is used as design traffic which is the basic traffic volume in transportation planning. Despite of its importance, at most locations, AADT is estimated using short term traffic counts. An accurate AADT is calculated through permanent traffic counts at limited locations. This study dealt with estimating AADT using various models considering both the spatial correlation and time series data. Kriging models which are commonly used spatial statistics methods were applied and compared with each model. Additionally the External Universal kriging model, which includes explanatory variables, was used to assure accuracy of AADT estimation. For evaluation of various kriging methods, AADT estimation error, proposed using national highway permanent traffic count data, was analyzed and their performances were compared. The result shows the accuracy enhancement of the AADT estimation.
For calculating the number of lane, it is essential to gain the 30th or 100th highest design hourly volume. The design hourly volume obtained from AADT multiplied by design hour factor. In this paper, we developed the regression models fur estimating the 30th highest hour volume and 100th highest hour volume as defined by AADT 50,000 criterion based on the data obtained the 34 monitoring sites in highway. By comparing the performance of the proposed models and conventional models using MAPE, the proposed model for 30th highest design hourly volume reduced the estimator error of 11.83% than that of conventional methods for less than AADT 50,000 and decreased estimation error of 22.17% than that of conventional method for more than AADT 50,000. Moreover, the proposed model for 100th highest design hourly volume reduced the estimator error of 8.16% than that of conventional methods for less than AADT 50,000 and decreased estimation error of 15.25% than that of conventional method for more than AADT 50,000.
In this paper, we suggest a spatial regression model to predict AADT. Although Euclidian distances between one monitoring site and its neighboring sites were usually used in the many analysis, we consider the shortest travel path between monitoring sites to predict AADT for unmonitoring site using spatial regression model. We used universal Kriging method for prediction and found that the overall predictive capability of the spatial regression model based on shortest travel path is better than that of the model based on multiple regression by cross validation.
Design Hourly Volume (DHV) is the hourly volume used for designing a section of road. DHV is also used to estimate the expected number of vehicles to pass or traverse the relevant section of road in a future target year. The Design Hour Factor (DHF) is defined as the ratio of DHV to Average Annual Daily Traffic (AADT). In addition to high precision of predicted traffic volume, in order to design a roadway to be the proper scale, applying appropriate DHFs considering traffic flow characteristics and type of area which surrounds the relevant roadway is important. This study categorizes sections of expressway (Suh Hae An Expressway) according to their area type and estimates DHFs utilizing traffic data obtained from a vehicle detection system (VDS). This study shows that DHFs calculated using VDS data are different from those using traffic data acquired from a coverage survey. While AADTs from both data show similar values, peak hour volumes from both data show significant differences especially for recreational areas. DHFs from the coverage survey are quite different from the values provided by the Korean design guide or previous research results and DHFs for urban areas are higher than recreational areas. However, DHFs from VDS shows similar values to previous research results. The result of this study suggests that using VDS for estimating DHFs is more reliable than using a coverage survey.
Ha, Jung-Ah;Heo, Tae-Young;Oh, Sei-Chang;Lim, Sung-Han
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.12
no.1
/
pp.1-14
/
2013
Annual average daily traffic (AADT) serves the important basic data in transportation sector. Despite of its importance, AADT is estimated through permanent traffic counts (PTC) at limited locations because of constraints in budget and so on. At most of locations, AADT is estimated using short-term traffic counts (STC). Though many studies have been carried out at home and abroad in an effort to enhance the accuracy of AADT estimate, the method to simplify average STC data has been adopted because of application difficulty. A typical model for estimating AADT is an adjustment factor application model which applies the monthly or weekly adjustment factors at PTC points (or group) with similar traffic pattern. But this model has the limit in determining the PTC points (or group) with similar traffic pattern with STC. Because STC represents usually 24-hour or 48-hour data, it's difficult to forecast a 365-day traffic variation. In order to improve the accuracy of traffic volume prediction, this study used the geostatistical approach called co-kriging and according to their reports. To compare results, using 3 methods : using adjustment factor in same section(method 1), using grouping method to apply adjustment factor(method 2), cokriging model using previous year's traffic data which is in a high spatial correlation with traffic volume data as a secondary variable. This study deals with estimating AADT considering time and space so AADT estimation is more reliable comparing other research.
KSCE Journal of Civil and Environmental Engineering Research
/
v.28
no.6D
/
pp.759-766
/
2008
Road classification system is the first step for determining the road function and design standards. Currently, roads are classified by various indices such as road location and function. In this study, we classify road using various traffic indices as well as to identify traffic characteristics for each type of road. To accomplish the objectives, mixture model was applied for classifying road and analyzing traffic characteristics using traffic data that observed at permanent traffic count stations. A total of 8 variables were applied: annual average daily traffic(AADT), $K_{30}$ coefficient, heavy vehicle proportion, day volume proportion, peak hour volume proportion, sunday coefficient, vacation coefficient, and coefficient of variation(COV). A total of 350 permanent traffic count points were categorized into three groups : Group I (Urban road), Group II (Rural road), and Group III (Recreational road). AADT were 30,000 for urban, 16,000 for rural, and 5,000 for recreational road. Group III was typical recreational road showing higher average daily traffic volume during Sunday and vacational periods. Group I showed AM peak and PM peak, while group II and group III did not show AM peak and PM peak.
Existing relative researches for traffic were studied under favorable weather or excluding impact of weather. This study present traffic volume variation according to rainfall intensity in national highway provincial road and rainfall-factor. Continuous traffic count section match AWS after selecting to analyze provincial road 256 section. Weekdays ADT(Average Daily Traffic) and rainfall-factor are influenced by rainfall a little because of business travel. But non-weekdays ADT and rainfall-factor are influenced much more than weekdays because of leisure travel. Estimated AADT(Annual Average Daily Traffic) by adjusting rainfall-factor is lower MAPE than non-adjusting rainfall factor. So, rainfall have to be considered when estimating AADT. ADT decrease according to rainfall intensity, continuous studies considered rainfall intensity are needed when road design and operation.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.20
no.6
/
pp.203-213
/
2021
A vehicle crash occurs due to various factors such as the geometry of the road section, traffic, and driver characteristics. A safety performance function has been used in many studies to estimate the relationship between vehicle crash and road factors statistically. And depends on the purpose of the analysis, various characteristic variables have been used. And various characteristic variables have been used in the studies depending on the purpose of analysis. The existing domestic studies generally reflect the average characteristics of the sections by quantifying the traffic volume in macro aggregate units such as the ADT, but this has a limitation that it cannot reflect the real-time changing traffic characteristics. Therefore, the need for research on effective aggregation units that can flexibly reflect the characteristics of the traffic environment arises. In this paper, we develop a safety performance function that can reflect the traffic characteristics in detail with an aggregate unit for one hour in addition to the daily model used in the previous studies. As part of the present study, we also perform a comparison and evaluation between models. The safety performance function for daily and hourly units is developed using a negative binomial regression model with the number of accidents as a dependent variable. In addition, the optimal negative binomial regression model for each of the hourly and daily models was selected, and their prediction performances were compared. The model and evaluation results presented in this paper can be used to determine the risk factors for accidents in the highway section considering the dynamic characteristics. In addition, the model and evaluation results can also be used as the basis for evaluating the availability and transferability of the hourly model.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.19
no.5
/
pp.106-118
/
2020
This study examined the impact of COVID-19 on traffic demand (Average Daily Traffic : ADT) by analyzing the available data on highway traffic volume and the spread of COVID-19 cases in Korea. This study used the data from 228 permanent traffic counts (PTCs) on highways from January to May of 2019 and 2020 to analyze the change in ADT. The first cases of infection in Korea occurred on January 20, 2020, and the maximum daily number of infections was 909 on February 29. On April 30, 2020, the daily number of infections decreased to four. The ADT decreased by 3.3% due to the impact of COVID-19. Considering that the traffic volume has increased 2.3% annually over the past decade, the actual decrease in ADT due to the COVID-19 is estimated to be 5.6% (3.3% + 2.3%). The ADT for weekends decreased significantly, compared to during the week. An analysis of the changes in ADT according to the road type revealed decreases in the following: urban roads -4.6%, rural roads -3.2%, and recreational roads -0.7%. Urban roads decreased the most, and tourist roads decreased the least.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.