• Title/Summary/Keyword: 연직판

Search Result 38, Processing Time 0.023 seconds

A study on fatigue properties of GFRP in synthetic sea water (인공해수중 GFRP의 피로특성에 관한 연구)

  • 김연직;임재규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1351-1360
    • /
    • 1993
  • The fatigue behavior of GFRP composites is affected by environmental parameters. Therefore, we have to study on effect of sea water on fatigue behavior of GFRP composites as to maintain the safety and confidence in design of ocean structure of GFRP. In this paper, we investigated the fatigue properties of chopped strand glass mat/polyester composite in synthetic sea water. (pH 8.2) In case of the glass fiber (CSM type) reinforced polyester composite materials, the fatigue crack in the both dry and wet specimens tested in air or synthetic sea water occurred at the initial of cycle. Thereafter, it was divided with two regions that one decreased with the crack extension and the other increased with the crack extension. The transition point occurred during the crack propagation shifted to high ${\Delta}K$ value as load increase but its point is not changed regardless of immersion or test environment under a constant load. The synthetic sea water degrades the bond strength between fiber and matrix, thereby the tendency of rapid deceleration and acceleration of the crack growth was appeared.

Design Method of RC Flat Plate Slab Considering Unbalanced Moment (불균형모멘트를 고려한 RC 무량판 슬래브 설계방법)

  • Song, Jin-Kyu;Sing, Ho-Beom;Oh, Sang-Won;Han, Sun-Ae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.149-152
    • /
    • 2008
  • In structural design provision, maximum punching shear stress of slabs is prescribed as combined stress of direct shear occurred by balanced gravity load and eccentric shear occurred by unbalanced moment. This means that the effect of unbalanced moment is considered to decide the punching shear stress. However, from the resistance capacity standpoint, the effect of unbalanced moment strength is not considered for deciding punching shear strength. For this problem, a model to show unbalanced moment-punching shear interrelation was proposed. In the model, the relation between load effect and resistance capacity in unbalanced moment-punching shear was two-dimensionally expressed. Using the interrelation model, a method how unbalanced moment strength should be considered to decide the punching shear strength was proposed. Additionally, a effective width enlargement factor for deciding the unbalanced moment strength of flat plates with shear reinforcements was proposed. The interrelation model proposed in this paper is very effective for the design because not only punching shear and unbalanced moment strengths but also failure modes of flat plates can be accurately predicted.

  • PDF

The Failure Model of RC Flat Plates Considering Interrelation between Punching Shear and Unbalanced Moment (불균형모멘트와 펀칭전단의 상관관계를 고려한 철근콘크리트 무량판 슬래브의 파괴모델)

  • Choi, Jung-Wook;Song, Jin-Kyu;Song, Ho-Beom
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.523-530
    • /
    • 2008
  • In structural design provision, maximum punching shear stress of slabs is prescribed as combined stress in direct shear occurred by gravity load and eccentric shear occurred by unbalanced moment. This means that the effect of unbalanced moment is considered to decide the punching shear stress. However, from the resistance capacity standpoint, the effect of unbalanced moment strength is not considered for deciding punching shear strength. In this paper, a model considering interrelation between unbalanced moment and punching shear was proposed. In the model, the relation between load effect and resistance capacity in unbalanced moment and punching shear was two-dimensionally expressed. Using the interrelation model, a method how unbalanced moment strength should be considered to decide the punching shear strength was proposed. Additionally, effective width enlargement factors for deciding the unbalanced moment strength of flat plates with shear reinforcements were proposed. The interrelation model proposed in this paper is very effective for the prediction of the behavior of slab-column connection because not only punching shear and unbalanced moment strengths but also failure modes of flat plates can be accurately predicted.

Design Methodology on the Steel-type Breakwater I.Design Procedure and Wave Pressure Estimation (철재형 이안제 설계기법 연구 I. 설계 및 파압추정 단계)

  • Kweon, Hyuck-Min;Han, Yu-Shik;Kwon, Oh-Kyun;Ko, Kyoung-Lae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.209-218
    • /
    • 2011
  • The present study proposes a new estimation relationship for the transmission rate of the steel breakwater which is expected to make up for the weakness points in existing hard solution for shore protection. The steel breakwater consists of the wave dissipator of the dual horizontal plates, the supporting columns and their foundations, and thus its respective designs should also be conducted one by one. Furthermore, the breakwater has to ensure both functions of shore protection and structure stabilization. The study produced experimental data for the stability and safety investigation of the steel breakwater. The forces acting on the steel breakwater were classified into two categories, one is vertical up and down loads for the pile resistance and the other was maximum difference of the vertical load acting on horizontally different position for the torsion. The study applied the stability force produced by the summation of maximum pressure at each point and the safety force acting on each point simultaneously. The regular wave corresponding to the significant wave was utilized for measuring wave pressure and force. The study showed the method for the proper position of submerged upper plate by considering occurrence frequency of tide level. The design process finally determined by trial and error is proposed in the present study.

Generalization of an Evaluation Formula for Bearing Pressures on the Rubble Mound of Gravity-Based Harbor Structures (중력식 항만구조물의 사석마운드 지반반력 평가식의 일반화)

  • Woo-Sun Park
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.128-137
    • /
    • 2023
  • In this study, the bearing pressure on the rubble mound of a gravity-based harbor structure with an arbitrarily shaped bottom was targeted. Assuming that the bottom of the structure is a rigid body, the rubble mound was modeled as a linear spring uniformly distributed on the bottom that resists compression only, and the bearing pressure evaluation formula was derived. It was confirmed that there were no errors in the derivation process by showing that when the bottom was square, the derived equation was converted to the equation used in the design. In addition, the validity of the derived equation was proven by examining the behavior and convergence value of the bearing pressure when an arbitrarily shaped bottom converges into a square one. In order to examine the adequacy of the method used in the current design, the end bearing pressure for the pre-designed breakwater cross-section was calculated and compared with the values in the design document. As a result, it was shown that the method used for design was not appropriate as it gave unsafe results. In particular, the difference was larger when the eccentricity of the vertical load was large, such as in the case of extreme design conditions.

Simple and Efficient Methods for the Response Estimation of Building Structure Subjected to Human Induced Loads (무리하중을 받는 구조물의 간편하고 효율적인 응답추정)

  • Kim, Tae-Ho;Lee, Dong-Guen;Min, Kyung-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.19-28
    • /
    • 2005
  • Long span structures with low natural frequencies such as shopping malls, large offices, and assembly rooms may experience signification dynamic responses due to human activities. In many cases, the group activities are common thing in comparison with the single activity. The purpose of this study is to evaluate the responses of building structure subjected to group human loads using mode shapes. For this purpose, equations to estimate the magnitudes ol responses ol structure subjected to group walking loads are derived. And the correlation of loads is verified for identifying the relation of each human load composing of group human loads using two load cells. The method is proposed for evaluating the responses of structure subjected to group loads using mode shapes and correlation function related to each human loads. The effectiveness ol the proposed method is verified analytically using a simple beam and floor and experimentally on a footbridge measuring the structural response induced by group pedestrians for the case of synchronization or not. Results indicate that the amplitudes of group walking loads can be easily estimated if the mode shapes are available, and that the corresponding structural responses can be estimated easily by the simple response measurement using the proposed method.

A Linear Wave Equation Over Mild-Sloped Bed from Double Integration (이중적분을 이용한 완경사면에서의 선형파 방정식)

  • Kim, Hyo-Seob;Jung, Byung-Soon;Lee, Ye-Won
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.165-172
    • /
    • 2009
  • A set of equations for description of transformation of harmonic waves is proposed here. Velocity potential function and separation of variables are introduced for the derivation. The continuity equation is in a vertical plane is integrated through the water so that a horizontal one-dimensional wave equation is produced. The new equation composed of the complex velocity potential function, further be modified into. A set up of equations composed of the wave amplitude and wave phase gradient. The horizontally one-dimensional equations on the wave amplitude and wave phase gradient are the first and second-order ordinary differential equations. They are solved in a one-way marching manner starting from a side where boundary values are supplied, i.e. the wave amplitude, the wave amplitude gradient, and the wave phase gradient. Simple spatially-centered finite difference schemes are adopted for the present set of equations. The equations set is applied to three test cases, Booij's inclined plane slope profile, Massel's smooth bed profile, and Bragg's wavy bed profile. The present equations set is satisfactorily verified against existing theories including Massel's modified mild-slope equation, Berkhoff's mild-slope equation, and the full linear equation.

  • PDF

Dynamic Performance Estimation of the Incrementally PSC Girder Railway Bridge by Modal Tests and Moving Load Analysis (다단계 긴장 PSC 거더 철도교량의 동특성 실험 및 주행열차하중 해석에 의한 동적성능 평가)

  • Kim, Sung Il;Kim, Nam Sik;Lee, Hee Up
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.707-717
    • /
    • 2006
  • As an alternative to conventional prestressed concrete (PSC) girders, various types of PSC girders are either under development or have already been applied in bridge structures. Incrementally prestressed concrete girder is one of these newly developed girders. According to the design concept, these new types of PSC girders have the advantages of requiring less self-weight while having the capability of longer spans. However, the dynamic interaction between bridge superstructures and passing trains is one of the critical issues concerning these railway bridges designed with more flexibility. Therefore, it is very important to evaluate modal parameters of newly designed bridges before doing dynamic analyses. In the present paper, a 25 meters long full scale PSC girder was fabricated as a test specimen and modal testing was carried out to evaluate modal parameters including natural frequencies and modal damping ratios at every prestressing stage. During the modal testing, a digitally controlled vibration exciter as well as an impact hammer is applied, in order to obtain precise frequency response functions and the modal parameters are evaluated varying with construction stages. Prestressed force effects on changes of modal parameters are analyzed at every incremental prestressing stage. With the application of reliable properties from modal experiments, estimation of dynamic performances of PSC girder railway bridges can be obtained from various parametric studies on dynamic behavior under the passage of moving train. Dynamic displacements, impact factor, acceleration of the slab, end rotation of the girder, and other important dynamic performance parameters are checked with various speeds of the train.