• Title/Summary/Keyword: 연직진동

Search Result 89, Processing Time 0.019 seconds

Efficient Analysis Models for Vertical Vibration of Space Framed Structures (3차원 골조구조물의 효율적인 연직진동해석)

  • 안상경;홍성일;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.78-85
    • /
    • 1996
  • The effect of vertical vibration of a beam is significantly influenced by higher modes of vibration. Therefore, a beam can be modeled using several elements must De used to represent a vibrating beam. As a result, analysis of a space framed structure for vertical vibration requires increase number of elements leading to more complicated model with many degree of freedom which requires large amount of computing resources for dynamic analysis. An efficient analysis method for vertical vibration of space framed structures are proposed in this paper which is presented in three method. The first method is to determine minimum nodes that shall be used to obtain dynamic response with the vertical vibration. Secondly, matrix condensation methods are introduced to reduce the computation efforts used to perform dynamic analysis and the selection of primary degree-of-freedom is proposed. The third method is of using the mass participation factor for the selection of primary degree-of-freedom.

  • PDF

Vertical Vorticity Structure Associated with the Boreal Summer Intraseasonal Oscillation: Barotropic or Baroclinic? (여름철 계절내 진동에 의한 대기 와도의 연직 구조: 순압성 또는 경압성?)

  • Song, Eun-Ji;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.259-265
    • /
    • 2012
  • This study investigates the reason why the barotropic vorticity structure prevails vertically in response to the enhanced convection associated with the boreal summer intraseasonal oscillation over the central Indian Ocean. The relative vorticity tendency analysis for a 2.5-layer simplified model demonstrates that the barotopic vorticity structure is predominant due to the following two factors: 1) vertical easterly shear on the meridional gradient of barotropic divergence (which induces generation of barotropic vorticity twice larger than that of baroclinic vorticity); and 2) vertical easterly shear on the meridional gradient of baroclinic divergence (which appears only in relation to the generation of barotropic vorticity). The percentage of contribution by each term to barotropic and baroclinic vorticity tendency equations is presented.

Dynamic Analysis for a Arch Railway Bridge Considering Real Train Loads (실 열차하중을 고려한 아치 교량의 동적해석)

  • Kim, Jung-Hun;Lee, Joo-Tak;Lee, Myeong-Sup;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.77.2-77.2
    • /
    • 2010
  • 고속열차(KTX)를 지지하는 구조물은 차량과 지속적인 접촉을 갖는 구조를 가지고 있으므로 고속열차의 운행 안정성(동적거동)을 고려한 설계가 필요하다. 또한, 상부 구조물은 고속열차의 연행이동집중하중을 지지하며, 이러한 하중조건을 갖는 차량이 운행할 때 상부 구조물은 설계 기준사항들을 만족해야한다. 호남고속철도 설계지침에 의하면 고속열차(KTX)의 운행 안정성을 평가하기 위한 항목들로 대상 교량의 고유진동수, 상판 수직가속도, 면틀림 그리고 승차감을 고려한 연직처침 등이 요구된다. 따라서, 본 연구에서는 KTX의 실 열차하중을 고려하여 연행이동집중하중으로 아치 교량의 동적거동을 검토하였으며, 호남고속철도 설계지침을 적용하여 대상 교량의 운행 안정성을 평가하였다.

  • PDF

Application of Response Spectrum Analysis Method for the Estimation of the Vertical Vibration in Structures (구조물의 연직진동해석을 위한 응답 스펙트럼 해석법의 활용)

  • 이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.12-19
    • /
    • 1998
  • Response spectrum analysis method is widely used for seismic analysis of building structure. Analysis of structural vibration for equipment, machine and moving loads are executed by time history analysis. This method is very complex, difficult and tedious. In this study, maximum response of structure for this case are simply and fast. calculated by mode shape and response spectrum for excitation. At first, Response spectrum and time history analysis for some earthquake is carried and investigate the error of maximum displacement response for R. S. A. Secondly, The process for response spectrum analysis in excitation are calculated, and maximum model response are combined by CQC (Complete Quadratic Combination) methods. Finally, Combining maximum displacement response is compared with one of time history analysis.

  • PDF

Suspension Properties of Silty Mud in Combined Wave-Current Flow (파-흐름의 공존장에서 실트질 점토의 정상특성)

  • 김차겸;이종섭
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.1
    • /
    • pp.26-33
    • /
    • 1992
  • Physical experiments were conducted to investigate the suspension properties of silty mud in combined wave-current flow. Suspension mass when there was opposing current was much higher than that when there was following current. It is due to the fact which strong turbulent flow in the bottom is developed in the opposing current but oscillatory flow effect decreases in the following current. Critical bed shear stress for suspension of silty mud in combined wave-current flow was deduced to be $\tau$$_{c}$~0.045 N/$m^2$. Formulas expressing the relation with initial suspension rate with bed shear stress, and the relation between the former and measured significant wave height were deduced. The relationship of initial suspension rate with bed shear stress was significantly scattered, but the relationship with measured significant wave height was reasonably good. When there is wave only, vertical diffusion coefficients of sediment were calculated from the vertical concentration gradients of suspended sediment when the concentration of suspended sediment approached to nearly equilibrium state. The diffusion coefficient increased exponentially with height from the bottom in the lower half of the flow depth but were nearly constant in the upper half of the flow depth.h.

  • PDF

The Effect of Dynamic Behavior on Changing Pile Cap Size of Pile Group in Sandy Soil (사질토 지반에서 말뚝 캡 크기가 무리말뚝의 동적거동에 미치는 영향)

  • Lee, Hyunkun;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.8
    • /
    • pp.5-12
    • /
    • 2019
  • A pile group, that consists of several piles connected by a pile cap, is used as the superstructure. The pile supports vertical and horizontal load to design the pile group, but the effect of bearing capacity of the pile cap has not considered. Various researches have been conducted to reflect the effect of bearing capacity of the pile cap in order to reduce the amount of piles in the range of the stability under the vertical load of the superstructure. However, the effect of bearing capacity under the horizontal seismic load has not been studied adequately. Therefore, a shaking table test was carried out with different-sized pile caps that support the superstructure in this study. This test was to verify the influence of the size of the pile cap in the group pile under the horizontal load. The result shows that the size of the pile cap affects to the dynamic behavior of the superstructure and the pile group. Also, the bigger size of the pile group makes the larger constraint effect of ground, and it results that both the ground and the pile moves as a whole.

Efficient Floor Vibration Analysis in A Shear Wall Building Structure (벽식구조물의 효율적인 연직진동해석)

  • Kim, Hyun-Su;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.55-66
    • /
    • 2004
  • Recently, many high-rise apartment buildings using the box system, composed of only reinforced concrete walls and slabs, have been constructed. In residential buildings such as apartments, vibrations occur from various sources and these vibrations transfer to neighboring residential units through walls and slabs. It is necessary to use a refined finite element model for an accurate vibration analysis of shear wall building structures. But it would take significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. Therefore, an efficient analytical method, which has only translational DOFs perpendicular to walls or slabs by the matrix condensation technique, is proposed in this study to obtain accurate results in significantly reduced computational time. If all of the DOFs except those perpendicular to walls or slabs in the shear wall structure eliminated using the matrix condensation technique at a time, the computational time for the matrix condensation would be significant. Thus, the modeling technique using super elements and substructuring technique is proposed to reduce the computational time for the matrix condensation. Dynamic analysis of 3-story and 5-story shear wall example structures were performed to verify the efficiency and accuracy of the proposed method. It was confirmed that the proposed method can provide the results with outstanding accuracy requiring significantly reduced computational time and memory.

Evaluation of Seismic Performance for Various Types of Pile Head of Landing Pier (잔교식 안벽에서 말뚝 두부형식에 따른 내진성능 평가)

  • Jang In-Sung;Kwon O-Soon;Park Woo-Sun;Jeong Weon-Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.2
    • /
    • pp.70-79
    • /
    • 2005
  • Most of landing piers in Korea employ the combination of vertical piles and batter piles, which shows good efficiency in static lateral resistance but poor seismic performance. Many attempts have continuously been made to increase the seismic performance of batter piles with various aseismatic systems. In this study, new types of aseismatic system were developed by use of rubber and ball bearing, and shaking table tests and 3 dim. numerical analyses were performed in order to compare the seismic performance for various types of pile head. The test and numerical analysis results show the high seismic performance of newly proposed systems and the applicability off dim. numerical analysis considering the non-linear behaviour of rubber and ball bearing systems.

Characteristics of Dynamic Load Transfer for Vertically Vibrating Pile (연직진동말뚝의 동적 하중전이 특성)

  • Lee, Seung-Hyun;Kim, Eung-Seok;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3872-3878
    • /
    • 2014
  • In this study, the dynamic load transfer function, which is necessary for analyzing a pile installed by a vibro hammer, was determined by comparing the results of the analyses and instrumented tests. The static load transfer function was modeled by the Ramberg-Osgood model through an analytical method before determining the dynamic load transfer curve. The parameters of the Ramberg-Osgood model were correlated with the N value of the standard penetration test and average values of the correlation coefficient were 0.97 for the shaft load transfer and 0.98 for the base load transfer. The dynamic load transfer function was simulated using the modified Ramberg-Osgood model. The results showed that there were little differences in the characteristics of dynamic load transfer between the results of the measurement and prediction.

Estimation of Dynamic Interface Friction Properties of Geosynthetics (토목섬유의 동적 경계면 마찰특성 평가)

  • 김동진;서민우;박준범;박인준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.265-275
    • /
    • 2003
  • In this study, shaking table tests were conducted to estimate dynamic interface properties between geosynthetics such as geomembrane, geotextile and geosynthetic clay liner. Accelerations of both shaking table and upper box, and relative displacements between geosynthetics under dynamic loading were measured. Also, the influence of normal stress, frequency of excitation and dry/wet conditions were investigated through the analyses of test results. from the test results, it was found that there is a limited acceleration below which dynamic farce can be transmitted between geosynthetics without the loss of horizontal acceleration. Dynamic interface friction angle between geosynthetics could be calculated through the limited acceleration. Relative displacements induced along geosynthetic interfaces under dynamic loading were not consistent depending on the type of interface and test conditions. The maximum slip displacements between geosynthetics are normalized and normalized slip equations were developed for each interface. By using the normalized slip equation, maximum slip displacements for the geosynthetic interface could be predicted for the given base acceleration and frequency of excitation.