• 제목/요약/키워드: 연역적 증명

검색결과 25건 처리시간 0.022초

순차식 연산 (Sequent calculus)과 절단제거 (Cut elimination) (Sequent Calculus and Cut-Elimination)

  • 정계섭
    • 한국수학사학회지
    • /
    • 제23권3호
    • /
    • pp.45-56
    • /
    • 2010
  • 순차식 연산은 겐첸이 자연연역을 1934년 대칭적 버전으로 재구성한 것으로서, 여기에서 그는 '주정리' 를 소개한다. 이 논문에서 우리는 절단의 유용성에도 불구하고 증명이론에서 왜 절단정리가 이토록 중요한 위상을 차지하는지 검토할 것이다. 이어서 커리-하우어드 대응의 역동적 측면, 즉 절단 제거와 단순히 유형화된 람다-연산에서 ${\beta}$-환원의 대응이 연구될 것이다. 이러한 대응의 중요성은 프로그램의 세계와 수학 증명의 세계를 마주보게 함으로써 프로그램의 정확성을 보증해준다는 데에 있다.

역동기하 환경에서 "끌기(dragging)"의 역할에 대한 고찰 (Review of the Role of Dragging in Dynamic Geometry Environments)

  • 조정수;이은숙
    • 대한수학교육학회지:학교수학
    • /
    • 제15권2호
    • /
    • pp.481-501
    • /
    • 2013
  • 본 연구는 역동기하 환경에서 "끌기"의 역할을 고찰하고자 한다. 끌기는 도형을 역동적으로 변화시키면서 기하 도형의 숨겨진 성질과 이들 사이의 관계를 나타내는 불변성을 탐색 가능하게 하는 중요한 역할을 한다. 따라서 본 연구는 선행 연구의 분석을 통해 역동기하 환경에서 끌기의 사용이 세 가지 관점으로, 즉 역동적 표상, 도구유발행위, 그리고 어포던스로 구분될 수 있다는 결론을 도출하였다. 본 연구에서는 끌기의 사용에 대한 이들 각각의 관점을 선행 연구를 중심으로 살펴보았다. 그리고 이로부터 (1) 연역적, 공리적, 형식적 지필기하를 실험수학으로 접근할 수 있게 하는 끌기의 가능성 탐구, (2) 추측과 증명 사이에서 끌기의 유형에 따른 작용 분석, (3) 학생과 DGS 사이의 도구발생 과정에 따른 기하 학습의 차이 분석, (4) 끌기에 의한 의사소통이나 담화 유형의 분석, (5) 어포던스로서 끌기에 의해 수반되는 측정 기능의 역할 분석, 그리고 (6) 끌기에 의한 기하 개념의 정의에 대한 학생들의 인식론적 변화를 기하의 교수-학습과 후속연구를 위한 제언으로 제시하고 있다.

  • PDF

수학의 형식과 대상에 따른 수학적 추론 지도 수준 (The Levels of the Teaching of Mathematical Reasoning on the Viewpoint of Mathematical Forms and Objects)

  • 서동엽
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제16권2호
    • /
    • pp.95-113
    • /
    • 2006
  • 본 연구는 학교 수학에서 추론 지도의 수준을 보다 상세히 구분해 보고자 한 것이다. 수학의 특징으로부터, 대상에서 분리된 순수한 형식적 관점은 새로운 지식의 창안에서 한계를 지닌다는 점을 알 수 있으며, 수학교육에서도 이를 반영할 필요가 있다고 본다. 이런 점에서 귀납 추론과 형식적 연역 추론의 매개 단계로서 구체적 조작이나 감각 경험과 관련된 직관적 증명의 수준을 설정하는 것이 적절할 것으로 생각되며, 이 수준의 핵심적인 활동은 경험으로부터 일반성을 통찰하는 것이다. 이 수준은 낮은 수준의 귀납 추론보다는 대상과 분리되며 보다 형식적인 논리의 개입을 필요로 하는 과정에 있다. 이와 같이 보다 점진적으로 대상으로부터 분리되고 형식적 논리를 학습할 수 있도록 추론 지도 수준을 구분하고, 이에 따라 수학적 추론을 지도하는 것이 필요할 것이다.

  • PDF

수학교육의 기호학적 적용 (Some Semiotic Applications in Mathematics Education)

  • 정치봉
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제23권2호
    • /
    • pp.461-481
    • /
    • 2009
  • 최근 20여 년 동안 국제적으로 기호학의 관점에서 수학교육에 대한 다양한 연구와 실천이 진행되어 오고 있다. 멀티미디어는 표현 매체이며 기호로서 수학 및 수학교육과 다양한 관계를 가지고 상호 작용한다. 수학 및 수학교육의 활동은 기호학의 관점에서 기호적 활동으로 영향력, 역할 그리고 범위가 확대될 것으로 예상된다. 본 논문에서는 기호학의 기본 개념을 소개하고 수학교육에서의 적용 가능성을 제안하였다. 개념, 표상, 사회적 구성주의, 문화와의 맥락에 관한 수학교육의 기존 연구와 기호학관점의 연구는 유사성을 갖는다. 기호학의 관점에서 산술학습, 연역법, 귀납법, 가추법과 퍼스의 기호-삼항틀 적용 사례, 기하의 명제들 사이의 퍼스-삼항틀 관계, 대칭과 증명을 다루는 기하학습 등을 제시하였다.

  • PDF

${\lambda}$-연산 소개 (${\lambda}$-calculus)

  • 정계섭
    • 한국수학사학회지
    • /
    • 제17권4호
    • /
    • pp.45-64
    • /
    • 2004
  • ${\lambda}$-연산은 ‘다시쓰기 규칙’으로 정의되는 계산을 위해 함수들이 형성되고, 결합되고, 활용되는 수학적 형식 체계이다. 컴퓨터과학의 발전과 더불어 많은 프로그래밍 언어들이 ${\lambda}$-연산을 원리로 삼고 있다. 나아가서, ‘커리-하워드 대응’ 덕분에 미제 연역에 의해 수행된 증명과 컴퓨터 프로그래밍 사이에 대응 관계를 설정할 수 있게 되었다. 이 글의 목적은 교육적인 차원에서 아직은 잘 알려져 있지 않은 주제를 대중화시키는 데에 있다. 논리학과 컴퓨터 과학에서 L-연산의 영향은 차후의 연구과제로 남아 있다.

  • PDF