• Title/Summary/Keyword: 연약지반 개량

Search Result 333, Processing Time 0.029 seconds

Consolidation characteristics of Soft Clay from Piezocone Dissipation Tests (피조콘 소산시험을 이용한 연약지반의 압밀특성)

  • 윤길림;구자갑
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.13-22
    • /
    • 2000
  • 서해안에 위치한 특정 연구현장에서 연약지반의 압밀거동을 파악하기 위한 소산시험을 포함한 콘관입시험을 수행했다. 연구현장에서 시험시공으로 적용한 연약지반개량공법으로는 압성토공법, 두 종류의 페이퍼드레인 공법, 팩드레인 공법이었으며 각각의 공법들에 있어 현장에서의 지반개량에 따른 압밀거동을 판정하기 위해서 적용되었다. 콘관입시험은 근본적으로 지반개량 전과 후에 보링, 표준관입시험, 압밀시험과 함께 수행되었다. 실내실험과 피조콘관입시험을 비교한 결과, 연약지반의 표층에서는 상당한 지반개량효과가 있었으나 표층아래 심층지반에서는 그렇치 않았다. 그리고 지반개량 후, 10개월이 지난 시점에 압밀시험과 소산시험 결과를 통하여 분석한 수평압밀계수는 압성토 방법을 제외한 3가지 개량공법을 적용한 지점에서 압밀계수는 감소하여 개량효과를 간접적으로 판단할 수 있었다.

  • PDF

A Case Study on Ground improvement of a Retaining Wall Foundation by Using High Pressure Grouting (고압분사공법을 이용한 옹벽기초지반 보강 사례)

  • Park, Jong-Ho;Jang, Sun-Cheul;Park, Chang-Hun;Yoon, Hee-Kyung
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.199-209
    • /
    • 2006
  • 현재 연약지반의 개량 및 구조물기초 지반의 보강을 위하여 약액주입공법 및 고압분사주입공법 등의 주입공법이 널리 행해지고 있는 실정이다. 이에 본 연구에서는 00교 교대 전면 옹벽기초 하부지반을 고압분사주입공법을 이용해 보강한 사례로서 설계 및 시공, 시험 자료를 분석하고, 보강작업에 따른 지반의 개량효과를 분석하였다. 개량효과학인을 위한 시추조사와 시추공영상 촬영 이미지 관찰결과에서는 고압분사에 의해 양호한 상태의 고결체(토사 + 시멘트 페이스트)가 형성되었음을 확인 할 수 있었으며, 고결체와 원지반의 복합지반상에서 실시한 평판재하시험 결과 및 시추조사시 채취된 고결체 Core에 대해 실시한 일축압축강도시험 결과에서도 설계시 가정한 값을 모두 만족하는 것으로 나타나 연약지반의 강도가 개량되어 안정성을 확보한 것으로 확인되었다.

  • PDF

Development of Decision Making Model for Soft Foundation Improvement Method considering Technically, Economic Effective Factors (기술적 ${\cdot}$ 경제적 영향요소를 고려한 연약지반 개량공법의 의사결정모델 개발)

  • Lee, Heung-Chol;Woo, Sung-Kwon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.698-701
    • /
    • 2006
  • Various improvement methods to treat settlement and stability of structures on soft foundation, that is now continuously introduced after being scrutinized. Therefore, it is very important to select the most suitable method among these various ones. In this study, quantifying the importance of effective factors when making decision, inducing priority and significance weight, systematic standard is proposed for technical, economic factor in making selection of soft foundation improvement method.

  • PDF

Behavior characteristics of Soft Ground Improved by Granular Pile (Granular Pile에 의해 개량된 연약지반의 거동특성)

  • Chun, Byung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.63-72
    • /
    • 2001
  • As construction cases on soft ground are increasing, the necessity of ground improvement is also increasing. Granular pile is one of the methods for soft clay and for loose sandy soil. In our country, SCP(Sand Compaction Pile) method using sand material has been mainly used to improve soft ground, but Granular pile with crushed-stone was not used much. However, alternative material such that crushed-stone is needed to substitute for sand due to the environmental and economical problems. In this study, staged load test and consolidation test were performed in the laboratory to observe the behavior of soft ground improved by Granular pile. In order to evaluate the characteristics such as bearing capacity, drainage, and settlement, sand and crushed-stone were applied as each pile material. The test results show that crushed-stone has higher bearing capacity and less settlement than those of sand under similar pore water pressure condition. Therefore, crushed-stone is determined to be appropriate as substitute for sand.

  • PDF

The Best Design of the Deep Mixing Method by the rate of substitution (치환율에 따른 심층혼합 처리공법의 최적 설계)

  • Park, Choon-Sik;Lee, Jun-Seok;Jung, Won-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.123-131
    • /
    • 2009
  • The study decided the improvement depth of soft ground of deep mixing method through 2 and 3 dimension finite element method and following results were acquired. 1. 2 dimension analysis shows settlement 10% more estimated than 3 dimension analysis. 2. When the rate of replacement is under 5%, the settlement sharply increased. 3. The most economical design for the levee was decided 3.0m for width direction, 6.0m for length direction and 8.0m for improvement depth. 4. When the soft ground is developed through deep mixing method, the decision of improvement should be decided through 3 dimension analysis than 2 dimension analysis.

  • PDF

Experimental Study on the Reinforcement Effect of Geogrid in Soft Ground Improvement (연약지반 개량시 지오그리드 보강효과에 관한 실험적 연구)

  • Ham, Hyeon-Su;Lee, Sang Duk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • The number of construction of roads and railroads in soft ground such as coastal areas and wetlands is getting increased. For this reason cases that soft ground improvement is applied are increasing. In general, many ground improvement methods consider only the working conditions at the time or only economy. But if the working condition and economy are taken into consideration together, the number of applicable construction method gets limited. In such a case, a ground improvement method using both the surface layer portion and the deep layer portion is applied. But the basic research on this is still insufficient in practice. Therefore, in this study the reinforcement effect of geogrid was investigated by carrying out the model test realizing the case in which soft surface ground improvement and depth improvement are simultaneously applied. And it was intened to understand the effect of the thickness of surface layer, the diameter and length of the improvement body on the reinforcement effect of geogrid. The result showed that the effect of the surface layer thickness is greater than the effect of the deep layer diameter. Moreover, when the surface layer is reinforced with a geogrid, the strength of the surface layer part is enhanced and this effect of a geogrid reinforcement caused the reduction of surface settlement.

Numerical Analyses on Consolidation Promotion Effect of Soft Clay Ground by Prefabricated Vertical Drain (PVD에 의한 연약점토지반의 압밀촉진효과에 대한 수치해석)

  • You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • In this paper, a series of numerical analyses on soft clay ground improved by PVD were carried out, in order to investigate the consolidation promotion effect considering PVD width and surcharge pressure. In the numerical analyses, an elasto-viscoplastic three-dimensional consolidation finite element method was applied, in which the applicability of numerical analyses could be confirmed comparing with consolidation behavior simulated at the laboratory. And, through the results of the numerical analyses, consolidation behaviors of soft clay ground with elapsed time was elucidated, together with the effects of PVD width and surcharge pressure.

  • PDF

A Study on the Behavior of Soft Clay Foundation Reinforced with Soil Cement Piles by Centrifugal Model Tests (원심모형실험에 의한 시멘트 개량말뚝으로 보강된 연약점토지반의 거동에 관한 연구)

  • Lee, Cheo-Keun;Shin, Bang-Woong;Heo, Yol;Ahn, Sang-Ro
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.109-120
    • /
    • 1994
  • One of problems being faced during construction of soil structures along the coastal regions is the stabilization of soft clay foundation, In this study, centrifugal model bests were conducted to investigate behavior effect of soft foundation reinforced by cement -soil piles for the stabilization of softs clay foundation during the embankment construction. This paper presents results of settlement and heaving behavior of reinforced and unreinforced foundation with time under the swaged loading for different best conditions. The test results have shown that the reductions of vertical settlement of the foundation and heaving of the ground surface adjacent to the embankment are greatly influenced by strength of improved pile, and moisture content, and especially the ratio of replacement area.

  • PDF