• Title/Summary/Keyword: 연안 침식

Search Result 179, Processing Time 0.056 seconds

An Experimental Study on the Effect of Erosion Control by Multi-Cylinder Piles (다원주 군파일의 침식방지효과에 관한 실험적 연구)

  • Lee, Sang-Hwa;Jang, Eun-Cheul;Lee, Han-Seung;Jeong, Seok-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.147-153
    • /
    • 2011
  • Environmental and safety problems are one of the most important factors in designing coastal wave control structures and maintaining facilities in coastal zone. This study suggests the multi-cylinder piles as a profitable structure for preserving coastal zone as well as controlling the wave effectively. The hydraulic model experiment was performed to investigate the effect of erosion control of the structure. The experimental study was carried out to research the effect of erosion control in the coastal zone for existing a concrete wave breaker and the structure with multi-cylinder piles placing at the same location. As a result multi-cylinder piles reduced erosion at each sides of structure and occured sedimetation at front of structure.

Developing Coast Vulnerable Area Information Management System using Web GIS (Web GIS를 이용한 연안위험취약지역 정보시스템 구축)

  • Pak, Hyeon-Cheol;Kim, Hyoung-Sub;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.155-164
    • /
    • 2005
  • The coast has been known as very vulnerable area. This area has nature disasters such as typhoon, tidal wave, flood and storm almost every year. In this study, coast vulnerable area information management system was developed to manage the coastal facilities and vulnerable area through Web GIS. This system is able to visualize the damage area and support the official work related to coast as efficient DSS(Decision Supporting System). Moreover, the foundation for domestic coast information management is expected by acquiring less cost and time. For this, GIS DB was first constructed by acquiring damage factor data such as typhoon, tidal wave, flood and storm. Then GIS analysis methods and high resolution satellite images are used to possibly present the results of retrieve as table, map, graph, inundation simulation in real time.

  • PDF

A Study on Hydrophilic Protection Block Development for Reduction of coastal disaster (연안재해 저감을 위한 친수형 호안 블록개발에 관한 연구)

  • Kim, Jong-Gil
    • Journal of Digital Convergence
    • /
    • v.15 no.3
    • /
    • pp.211-219
    • /
    • 2017
  • Among government projects for reduction of coastal disaster, coastal maintenance project stage 1(2000~2009) and stage 2(2010~2019) to reduce coastal erosion and sedimentation are currently under process. In performing the coastal maintenance projects, it is necessary to install artificial concrete armor units for coastal protection. Presently in Korea, products manufactured in Japan are applied to the site, or blocks self-developed by the construction firms are installed. However, there is a lack of technical reviews such as verification of hydraulic characteristics, securing the stability and design techniques. This study is intended to develop waterfront shore protection blocks with good accessibility of people and excellent coastal disaster reduction and protection capability. Through this study, hydraulic characteristics and stability coefficients of shore protection blocks could be drawn.

일반/해외

  • 한국어항협회
    • Monthly Newsletter
    • /
    • no.204
    • /
    • pp.5-5
    • /
    • 2004
  • 서울 소재 어장정비업체도 등록 가능 - 일본 전국 어항어장 정비기술 연구발표회 개최 - 경기 전곡 해양레저항으로 개발 - 전국 백사장 8곳 연안침식 모니터링 실시

  • PDF

Investigation of Coastal Erosion Status in Geojin Port Area (거진항 일대의 해안 침식 현황 조사 연구)

  • Kim, In-Ho;Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.67-73
    • /
    • 2012
  • Coastal erosion and its impact on human activities as well as the economic damage and environmental conservation of coastal area is one of major concern in the national policies. In this study, we conducted physical investigations to evaluate effects of erosion in the Geojin beach, which is located nearby the Geojin Port, for a detecting of shoreline change and beach cross-sectional area. The results showed that significant coastal erosion of the Geojin beach has occurred by the complex resources of natural factor, such as rising sea level, storm surges, high wave, and man-made construction. Especially, due to the sand supplement from Jasan river, the section which is nearby the estuary of Jasan river is maintained as a stable beach, whereas beach erosion of the other site in GW04 section has been increased indeed. Therefore, we suggest that it is need to continuous monitoring using DGPS and various surveying techniques to prevent beach erosion onto the GW04 section.

Nearshore Sediment Transport in Vicinity of Anmok Harbor, East Coast of Korea. (동해 안목항 주변 연안 토사이동)

  • 김인호;이정렬
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.108-119
    • /
    • 2004
  • The breakwater extension at Anmok Harbor has resulted in erosional stresses along the wide range of shorelines immediately south of the harbor. In this study, therefore, the downdrift affects caused by the breakwater extension are investigated through both analytical and numerical approaches. In addition, this study stresses the need of monitoring and analysis system for the effective integrated coastal zone management and shows through the case study of Anmok Harbor how the numerical experiments are accomplished for the coastal zone management. The numerical model system, which predicts the seabed changes obtained from the difference between the rates of sediment pickup and settling due to gravity, is combined with the wave, wave-induced currents, and suspended sediment transport models. A new relationship between the near-bed concentration and the depth-mean concentration, which is required in estimating the settling rates. is presented by analyzing the vertical structure of concentration.

Improvement for Marine Environmental Impact Assessment on the Coastal Development Project Type (연안개발사업 유형에 따른 해양환경영향평가 개선방안)

  • Kim, In-Cheol;Jeon, Kyeong-Am;Kim, Gui-Young;Eom, Ki-Hyuk;Kim, Young-Tae;Choi, Bo-Ram
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.157-164
    • /
    • 2014
  • This paper suggested the improvement of marine environmental impact assessment of different types of project by analyzing the consultation on the coastal area utilization(133cases) of the coastal development project for 4years(2010-2013). According to the analysis results, the erosion protection project needs to precede the accurate analysis of erosion reasons, predict exactly possible problems and establish the systematic system to verify the effect of erosion protection by monitoring after projects. The construction projects of revetments and coastal roads have to require to sublate, examine the reliability in structures, give consideration to the problems of coastal erosion by increase of reflected waves. In addition, flooding protection projects have got to require to select the waves for evaluation items in conjunction with the effects of abnormal waves. furthermore, waterfront construction projects need to establish comprehensive and methodical space plans and reinforce the review to conserve the natural environment and conduct nature-friendly development. There are many problems inherently related to coastal development Project. To these problems, however, it is required to support the project on the side of the legislation and conduct additional studies reflecting the characteristics by sea areas and projects.

Field Observation of Morphological Response to Storm Waves and Sensitivity Analysis of XBeach Model at Beach and Crescentic Bar (폭풍파랑에 따른 해빈과 호형 사주 지형변화 현장 관측 및 XBeach 모델 민감도 분석)

  • Jin, Hyeok;Do, Kideok;Chang, Sungyeol;Kim, In Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.446-457
    • /
    • 2020
  • Crescentic sand bar in the coastal zone of eastern Korea is a common morphological feature and the rhythmic patterns exist constantly except for high wave energy events. However, four consecutive typhoons that directly and indirectly affected the East Sea of Korea from September to October in 2019 impacted the formation of longshore uniform sand bar and overall shoreline retreats (approx. 2 m) although repetitive erosion and accretion patterns exist near the shoreline. Widely used XBeach to predict storm erosions in the beach is utilized to investigate the morphological response to a series of storms and each storm impact (NE-E wave incidence). Several calibration processes for improved XBeach modeling are conducted by recently reported calibration methods and the optimal calibration set obtained is applied to the numerical simulation. Using observed wave, tide, and pre & post-storm bathymetries data with optimal calibration set for XBeach input, XBeach successfully reproduces erosion and accretion patterns near MSL (BSS = 0.77 (Erosion profile), 0.87 (Accretion profile)) and observed the formation of the longshore uniform sandbar. As a result of analysis of simulated total sediment transport vectors and bed level changes at each storm peak Hs, the incident wave direction contributes considerable impact to the behavior of crescentic sandbar. Moreover, not only the wave height but also storm duration affects the magnitude of the sediment transport. However, model results suggest that additional calibration processes are needed to predict the exact crest position of bar and bed level changes across the inner surfzone.

GIS-based Estimation of Climate-induced Soil Erosion in Imha Basin (기후변화에 따른 임하댐 유역의 GIS 기반 토양침식 추정)

  • Lee, Khil Ha;Lee, Geun Sang;Cho, Hong Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.423-429
    • /
    • 2008
  • The object of the present study is to estimate the potential effects of climate change and land use on soil erosion in the mid-east Korea. Simulated precipitation by CCCma climate model during 2030-2050 is used to model predicted soil erosion, and results are compared to observation. Simulation results allow relative comparison of the impact of climate change on soil erosion between current and predicted future condition. Expected land use changes driven by socio-economic change and plant growth driven by the increase of temperature and are taken into accounts in a comprehensive way. Mean precipitation increases by 17.7% (24.5%) for A2 (B2) during 2030-2050 compared to the observation period (1966-1998). In general predicted soil erosion for the B2 scenario is larger than that for the A2 scenario. Predicted soil erosion increases by 48%~90% under climate change except the scenario 1 and 2. Predicted soil erosion under the influence of temperature-induced fast plant growth, higher evapotranspiration rate, and fertilization effect (scenario 5 and 6) is approximately 25% less than that in the scenario 3 and 4. On the basis of the results it is said that precipitation and the corresponding soil erosion is likely to increase in the future and care needs to be taken in the study area.

A Two-dimensional Numerical Simulation of Cohesive Sediment Transport in the Mokpo Coastal Zone (목포해역의 점착성 퇴적물 이동에 관한 2차원 수치모의)

  • Choi, Jong-Hwa;Jung, Tae-Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.287-294
    • /
    • 2012
  • Sedimentary environment in coastal zone has been changing due to a large number of coastal structures and continuous coastal development. As a result, the environment has been changing. In particular, the economic and environmental damage can occur due to cohesive sediment transport closely related with the fate of pollutants. Due to large sea wall construction the ebb dominance in the Mokpo coastal waters has been clearer. Cohesive sediment transport was simulated by the EFDC model. The simulated SS showed good agreements with the observed SS. From the sensitivity analysis of sediment parameters, we found out that the erosion rate, the critical shear stresses for erosion and deposition, and the settling velocity are important factors in cohesive sediment transport modeling.