• Title/Summary/Keyword: 연안용승

Search Result 56, Processing Time 0.035 seconds

Coastal upwelling observed off the East coast of Korea and variability of passive sound detection environment (동해 연안에서 관측된 용승현상과 수동 음탐환경의 변화)

  • Sang-Shin, Byun;Chang-Bong, Cho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.601-609
    • /
    • 2022
  • In August 2007, coastal upwelling occurred off the east coast of Korea, and vertical water temperature and salinity data were obtained from a real-time surface ocean buoy. Based on the time series observation data, a vertical sound velocity structure was calculated before, during, and after the occurrence of the coastal upwelling, and how the coastal upwelling affects the sound propagation and detection environment through acoustic modeling considering the horizontal scale and actual seabed topography. As a result of comparing and analyzing the low-frequency (500 Hz) sound transmission loss and the target detection range by depth using the parabolic equation model, it was analyzed that if coastal upwelling occurs, a detection gain of up to about 10 dB can be expected. In addition, through this study, it was confirmed that the characteristics of sound propagation can be greatly changed even in a short period of about 2 to 3 days before and after coastal upwelling.

Numerical Experiments of Coastal Upwelling Occurred by Summer Winds in the East Sea of Korea (한국 동해 연안에서 하계 바람에 의해 발생하는 연안용승에 관한 수치실험)

  • Seo, Ho-San;Lim, Woo-Hyun;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.347-353
    • /
    • 2017
  • In this study, numerical experiments were conducted to identify distribution of rising flow and flux in the East Sea of Korea, where the coastal upwelling occurs. Temperature and salinity data from CTD observations and NIFS during summer 2013 were applied to the model. Numerical experiments were carried out with different wind speed (3, 6 m/s and 9 m/s) and direction (southerly and southwesterly), which represent the most frequent in summer conditions. As a result of calculation, upwelling flow rate was found to be highest in Pohang between five coasts(Hupo, Youngduk, Pohang, Ulsan and Busan). Comparing with southerly wind conditions, the rising flow rate is about 1.5 times greater when southwesterly wind was applied. Horizontal diffusion of the upwelling area is expected to have a speed of 17~22 km/day when a 9 m/s southwesterly wind is applied. If this wind continues over one week, a cold pool will be generated by upwelling that may reach to the Ulleung area.

Effect of El Niño and La Niña on the Coastal Upwelling in East Sea, South Korea (엘니뇨와 라니냐가 한국 동해 연안용승에 미치는 영향)

  • Seo, Ho-San;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.75-83
    • /
    • 2020
  • This study investigated the effects of El Niño and La Niña on coastal upwelling in the East Sea of Korea using long-term (1967-2017) water temperature observation data and Oceanic Niño Index (ONI). As a result of time series analysis of water temperature, the occurrence frequency of summer coastal upwelling was the highest in the southeastern (Ulgi ~ Gimpo) coast. In 1987-1988 and 1997-1998, when the annual fluctuations of ONI plunged more than 2.5, the water temperature in whole coast areas of the East Sea (Busan ~ Goseung) rose by 4 ~ 7 ℃. The temperature structure of the East Sea coastal water was different when El Niño was strong with ONI above 1.5 and La Niña with strong ONI below -0.8. When El Niño is strong, the water temperature anomaly in coastal waters is negative. This is due to the strong baroclinic tilting and the formation of shallow temperature stratification in the coastal waters. The strong La Niña season is opposite to the strong El Niño season, whereas the water temperature anomaly is positive. In addition, the baroclinic tilting is weaker than the time of strong El Niño and the temperature stratification is formed deeper than the time of strong El Niño. The formation of temperature stratification at shallow depths when El Niño is strong can increase the probability of occurrence coastal upwelling caused by southerly winds in the summer season. On the contrary, when La Niña is strong, occurrence of coastal upwelling is less likely even if the southerly wind blows continuously. This is because the temperature stratification is formed at deeper than when El Niño is strong.

Change of Coastal Upwelling Index along the Southeastern Coast of Korea (동해 남부 연안용승지수의 변화)

  • SHIN, CHANG-WOONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.79-91
    • /
    • 2019
  • Long-term trends and recent variations of upwelling index (UI), which affects significantly ecosystem in southwestern part of the East Sea, were investigated. The UI was calculated with the NCEP/NCAR reanalysis data from January 1948 to September 2018. The mean UI has positive value that causes upwelling in April to August with a peak in July. The long-term reducing trend of UI was in statistically significant in June and July, and the sum of UI in May, June and July also showed same result. Through the atmospheric pressure analysis around the Korean peninsula, it was found that the trend of the UI was the influence of the pressure change trend in the northwestern region ($35-50^{\circ}N$, $114-129^{\circ}E$) of the southwestern part of the East Sea. Investigating UI in recent 7 years from 2012 to 2018, it was revealed that the UI was bigger than 3 times of standard deviation in July 2013. This was result from the sea level pressure difference became larger in the southwestern part of the East Sea than normal year due to the lowered air pressure in the northeastern region of China and the strengthened high air pressure of western peripheral of the North Pacific High. On the other hand, the UI in July 2018 was negative when the impact of the North Pacific High and the low air pressure in the northeastern China was weak. Due to the decreasing trend of UI and its large year-to-year variation in southwestern part of the East Sea, continuous monitoring is necessary to know the influence of coastal upwelling on the ecosystem.

CHEMICAL OCEANOGRAPHIC ASPECT OF THE COLE WATER MASS IN OFFSHORE OF THE EAST COAST OF KOREA (한국 동해안 냉수괴의 해양화학적 고찰)

  • PARK Chung Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.11 no.2
    • /
    • pp.49-54
    • /
    • 1978
  • The cold water mass appeared in offshore of the east coast of Korea in summer season was studied in aspect of chemical oceanography. Such a typical relationship between phosphate and dissolved oxygen as shown in the upwelling regions could not be found in the east coast except around the Kampo coast, southern part of the east coast. It is possible to isolate the North Korean Cold Water from tile proper water of tile Japan Sea by using $\sigma_t-O_2$ diagram. The origin of the cold water mass in offshore of the east coast of Korea in summer is not mainly due to the development of upwelling of the proper water of the Japan Sea but thesouthwardflolvingoftheNorthKoreanCold Water.

  • PDF

Numerical Simulation of Upwelling Appearance near the Southeastern Coast of Korea (한국 남동 연안역의 용승현상에 관한 수치실험)

  • Kim, Dong-Sun;Kim, Dae-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • To investigate the appearance of cold water by upwelling effect near Ulsan-Gampo of the southeastern coast in Korea on June, 1999, we carried out a numerical experiment by 3-dimensional diagnostic numerical model. Appearance of cold water by the result of numerical experiment was due to upwelling by wind effect at 50-100m depth near Ulsan-Gampo coast. This result was mused by using a model to 2 times of existing wind magnitude near Busan, Ulsan and Gampo that is 5.0m/sec wind. Therefore, to illustrate the phenomenon of extraordinary marine environment like upwelling event and so forth, appropriate wind data at sea should be used instead of those on land.

  • PDF

Correlation Analysis of UA Using Wind Data of AWS/ASOS and SST in Summer in the East Sea (AWS/ASOS 바람자료를 이용한 여름철 동해 연안역의 용승지수와 수온과의 상관성)

  • Kim, Ju-Yeon;Han, In-Seong;Ahn, Ji-Suk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.773-784
    • /
    • 2018
  • In this study, we examined the UA (upwelling age) using wind data of AWS/ASOS in the East Sea coast and the correlation between UA and SST (sea surface temperature) from May to August in 1995 to 2016. The data used the 6 observations of the wind data of AWS/ASOS and the SST data of the COD/RISA provided by the National Institute and Fisheries Science near the East Sea coast. The UA was calculated quantitatively low but it rose when the actual cold water mass occurred. Correlation analysis between UA and SST showed the negative (-) r (correlation coefficient) predominately. At the time of cold-water mass in June to August 2013, the r had a very high negative value of -0.65 to -0.89 in the 6 observations. It proved that as the UA increases, the SST is lower. By knowing the UA, we were able to evaluate the trend of upwelling in the cold-water mass of the East Sea coast in the long term and it will contribute to minimizing the damage to aquatic organisms according to the size and intensity of the upwelling.

Variation and Structure of the Cold Water Around Ganjeol Point Off the Southeast Coast of Korea (하계 용승현상에 따른 간절곶 주변해역의 냉수역 구조와 변동)

  • Choo, Hyo-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.836-845
    • /
    • 2016
  • The variation and structure of the cold water mass around Ganjeol Point during the summer of 2011 were studied using data from CTD observations and temperature monitoring buoys deployed at 20 stations off the southeast coast of Korea. There was a $-12^{\circ}C$ surface temperature difference between the cold water mass and normal water during the monitoring period. Variations in the isothermal lines for surface temperature along the coast showed that the seabed topography at Ganjeol Point played an important part in the distribution of water temperature. Cold water appeared when the wind components running parallel to the coast had positive values. The upwelling -response for temperature fluctuations was very sensitive to changes in wind direction. Vertical turbulent mixing due to the seabed topography at Ganjeol Point can reinforce the upwelling of cold bottom water. From wavelet analysis, coherent periods found to be 2-8 days during frequent upwelling events and phase differences for a decrease in water temperature with a SSW wind were 12-36 hours.

Characteristics of Ocean Environment Before and After Coastal Upwelling in the Southeastern Part of Korean Peninsula Using an In-situ and Multi-Satellite Data (다중위성 및 현장관측을 이용한 동해남부 연안용승 발생 전후의 해양환경 특성)

  • Kim, Sang-Woo;Go, Woo-Jin;Kim, Seong-Soo;Jeong, Hee-Dong;Yamada, Keiko
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.4
    • /
    • pp.345-352
    • /
    • 2010
  • The objective of this paper is to explore the short-term variability of water temperature and chlorophyll a (Chl-a) derived from in-situ and satellite data (NOAA, Sea WiFS and QuikScat) in the upwelling region of the southeastern part of Korean Peninsula in June and August, 2007. Particularly we focused on the spatial variability of sea surface temperature(SST) and Chl-a in the East Korean Warm Current region. In the results of the in-situ data, the peaks of Chl-a in june was shown at a depth of 50m The peaks of Chl-a in August was shown at a depth of 10m at the stations 4 and 5 near the land, and a depth of 30m at the other stations. The Chl-a concentrations in August were also lower than those in june except for station 5. As a result, the peaks of Chl-a in August occurred at a depth of 20~40 m shallower than those of Chl-a in june. This indicates that the nutrient-rich water within the mixed layer depth may be immediately supplied by the coastal upwelling, which is due to the southerly component of wind. The relationship between SST and Chl-a showed a negative correlation, and the high concentration of Chl-a occurred in the cold water area. The southerly wind and the East Korean Warm Current influenced a remarkable offshore movement of the cold water and Chl-a near the coastal area.