• Title/Summary/Keyword: 연쇄

Search Result 1,288, Processing Time 0.032 seconds

Detection of Mycobacterium tuberculosis DNA by PCR in Peripheral Blood of Patients with Pulmonary Tuberculosis (폐결핵 환자의 말초 혈액에서 중합효소연쇄반응을 이용한 결핵균 DNA의 검출)

  • Hong, Yoon Ki;Jo, Kyung Uk;Lee, Hyeyoung;Kim, Mi-Na;Sung, Heungsup;Oh, Yeon-Mok;Lee, Sang Do;Kim, Woo Sung;Kim, Dong Soon;Kim, Won Dong;Shim, Tae Sun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.4
    • /
    • pp.331-336
    • /
    • 2007
  • Background: Although pulmonary tuberculosis (TB) is a respiratory disease, the presence of Mycobacterium tuberculosis (Mtb) DNA or Mtb itself has been reported in the peripheral blood (PB) of several patients with pulmonary TB. Additionally, it was recently announced that active pulmonary TB patients donated PB, and that this blood was then transfused to other individuals in Korea. Methods: Sixty-nine patients with bacteriologically-confirmed pulmonary TB (35), non-tuberculous mycobacterial (NTM) lung disease (6), and other lung diseases (28) were enrolled in this study, which was conducted to determine if Mtb DNA could be detected in the PB by PCR. In addition, 10 pulmonary TB patients with high-burden bacilli were also enrolled in this study for the culture of Mtb in PB. Results: PCR detected the presence of Mtb in 22.8% (8/35) of the pulmonary TB patients, in 16.7% (1/6) of the patients with NTM lung disease, and in none of the patients with other diseases (0%). In addition, no Mtb was cultured from the PB of the 10 pulmonary TB patients. Conclusion: Although Mtb DNA was detected in the PB of some patients with pulmonary TB, viable Mtb was not isolated from the PB of those patients, which indicates that patients that viable Mth may not be transmitted via trasfusion of blood of pulmonary TB patients.

Profiles of microRNAs in Mice Follicles According to Gonadotropins during in vitro Culture (생쥐 난포의 체외배양 중 생식샘자극호르몬에 따른 미세리보핵산 발현 양상)

  • Kim, Yong-Jin;Ku, Seung-Yup;Kim, Yoon-Young;Oh, Sun-Kyung;Kim, Seok-Hyun;Choi, Young-Min;Moon, Shin-Yong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.4
    • /
    • pp.265-274
    • /
    • 2009
  • Objective: MicroRNAs (miR) are known to repress target genes at post-transcriptional level and play important roles in development and maturation of cell. However, the expression profiles of miR during ovarian follicle maturation have not been fully elucidated. Here, we designed this study to investigate the expression profiles of miR in oocytes and granulose cells (G-cells) after in vitro culture according to gonadotropins and adding hCG. Methods: Ovaries from 12-day-old mice (C57BL6) were removed and preantral follicles were isolated and cultured in $20\;{\mu}L$-drop of culture media with supplementation of either rFSH, rLH, or rFSH+rLH. After their full maturation, follicles were incubated with rhCG and rEGF. RNA was isolated from oocytes and G-cells, and real-time PCR were performed with primers of miR known to be expressed in the mouse ovary (mmu-miR-16, -miR-27a, -miR-126, -miR-721). Results: FSH+LH group showed the highest ovulation and MII rates among gonadotropin groups. The profiles of miRs in oocytes and G-cells differed according to gonadotropin groups and adding hCG. The profiles of miRs showed divergent changes between oocytes and G-cells. Conclusion: miR expression profiles are altered by gonadotropins and supplementation of hCG during in vitro maturation of murine follicles. Target gene study must be necessary to validate these findings.

Prognostic Value and Histologic Correlation of Sonography in Childhood Nephrotic Syndrome (신증후군 환아에서 신장초음파의 예후적 가치 및 조직검사와의 상관관계에 대한 연구)

  • Cheon Hae-Won;Yoo Kee-Hwan;Hong Young-Sook
    • Childhood Kidney Diseases
    • /
    • v.2 no.1
    • /
    • pp.26-33
    • /
    • 1998
  • This retrospective study was designed to evaluate the prognostic value and histologic correlation of sonography in childhood nephrotic syndrome. Sixty-nine patients with proteinuria over 2g per day at the time of presentation who were treated at the Korea University Hospital were included in this review. They were 1 to 15 years old(mean age, 7.8 years) with 49 males and 20 females. In each patient an ultrasound examination was done using SPA 1000(Diasonics, C.A., U.S.A.) on admission. Tissue specimens were obtained from 46 patients. The paraffin-embedded specimens were reviewed with special reference to interstitial edema, interstitial fibrosis, tubular atrophy, global sclerosis or inflammatory cell infiltrates. Biopsy proven renal disease were minimal change disease(n=20), focal segmental glomerulosclerosis(n=7), membranous glomerulonephritis(n=2), membranoproliferative glomerulonephritis(n=1), $Henoch-Sch\"{o}nlein$ purpura nephritis(n=6), IgA nephropathy(n=5), poststreptococcal glomerulonephritis(n=2), systemic lupus erythematosus(n=1) and Alport syndrome(n=2). There was a significant relationship between increased cortical echogenicity and global sclerosis or tubular atrophy(P<0.05). But no significant relationship was found between increased cortical echogenicity and interstitial fibrosis, interstitial edema, or inflammatory cell infiltration. In biopsy-proven primary nephrotic syndrome(n=30), no significant relationship was found between the increased conical echogenicity and the interstitial edema, interstitial fibrosis, global sclerosis, tubular atrophy or inflammatory cell infiltration. But there was a significant relationship between increased cortical echogenicity and resistance to corticosteroid (P<0.05). These results suggest that increased cortical echogenicity may be due to tubular atrophy or global sclerosis in patients with proteinuria and may be an effective indicator of resistance to corticosteroid in primary nephrotic syndrome.(J Korean Soc of Pediatr Nephrol 2:26-33, 1998)

  • PDF

Effect of Cobalt (II) on the Fertilization and Embryo Development of the Sea Urchin ($Hemicentrotus$ $pulcherrimus$) (코발트(II)가 말똥성게($Hemicentrotus$ $pulcherrimus$)의 수정 및 배아 발생에 미치는 영향)

  • Hwang, Un-Ki;Ryu, Hyang-Mi;Choi, Yong-Hwan;Lee, Seung-Min;Kang, Han-Seung
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.251-257
    • /
    • 2011
  • Cobalt is a naturally occurring element found in rocks, soil, water and/or is among the harmful pollutants as generated by industrialized. In the environment, cobalt has two oxidation states, cobalt (II) (Co (II)) and cobalt (III) (Co (III)). If coastal water is contaminated by cobalt, it through the food chain can have an impact on marine ecosystems. Therefore, we examined the gametotoxic and embryotoxic effects of Co (II) at various concentrations (10, 100, 500, 1000, 2500 ppb) in the sea urchin $Hemicentrotus$ $pulcherrimus$. Spawning was induced by injecting 1 mL of 0.5 M KCl into coelomic cavity. Males released white or cream-colored sperms and females released yellow or orange-colored eggs. Experiment was begun within 30 min the collection of both gametes. The fertilization and embryo development rates test were performed for 10 min and 64 h after fertilization, respectively. The fertilization rates in the control condition (not including Co (II)) and experimental group were not significantly changed. The embryo development rates in the control condition were greater than 90% and were significantly decreased with concentration dependent manner. The normal embryogenesis rate was significantly inhibited in exposed to cobalt (II) ($EC_{50}$=71.84 ppb, 95% Cl=16.71-203.36 ppb). The NOEC and LOEC of normal embryogenesis rate were <10 ppb and 10 ppb, respectively. These results suggest that the early embryo stages of $H.$ $pulcherrimus$ have toxic effect at greater than 10 ppb of Co (II) concentration.

Effects of Bisphenol and Octylphenol on TM3 Cell : Expression of Cytochrome P450scc and Estrogen Receptor $\alpha$ mRNA (Bisphenol과 Octylphenol이 TM3 세포에 미치는 영향: Cytochrome P450scc와 Estrogen Receptor $\alpha$ 유전자의 발현)

  • 이호준;김묘경;강희규;김동훈;한성원;고덕성
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.215-220
    • /
    • 2000
  • Most of endocrine disrupters (EDs) have been reported to exhibit estrogenic or anti-androgenic activity and thereby may disrupt reproductive development in human or wildlife. This study was performed to investigate the effects of estrogen (E$_2$), bisphenol (BP) and octylphenol (OP) on the mouse Leydig cell line (TM3). TM3 originated from testis of 11~13-daly-old BALB/c nu/+ mice was cultured in DMEM supplemented with 10% FBS alone or medium with estrogen (E$_2$), bisphenol (BP) and octylphenol (OP; 1 pM, 1 nM, 1 $\mu$M, 1 mM, respectively) for 48 hours. After culture, total cell number and viability were assessed by heamocyto-meter and trypan blue stain. Expression of cytochrome P450scc (CYPscc) mRNA whose product is involved in steroid hormone biosynthesis and estrogen receptor $\alpha$(ER $\alpha$) mRNA were detected by RT-PCR. As a result, treatment of TM3 with E$_2$, BP and OP(1 mM, respectively) significantly decreased the viability but not all of groups as high as 1 $\mu$M. Exposure of TM3 to OP significantly reduced the total cell number but not E$_2$ or BP. The expression of CYPscc mRNA was slightly reduced in BP (1 nM, 1 $\mu$M) and significantly decreased in OP (1 nM, 1 $\mu$M) treated TM3, except E$_2$ group. But the expression of ER $\alpha$ mRNA was sightly increased in all treated groups. In conclusion, BP and OP (high concentration) might inhibit steroidogenesis by decreasing the CYPscc mRNA expression in the mouse testis. These results suggest that BP and OP might impair spermatogenesis and subsequently disturb testicular function.

  • PDF

Physicochemical and Biological Properties of Constructed Small-scale Ponds for Ecological Improvement in Paddy Fields (논 생태 증진을 위해 설치된 둠벙의 물리.화학적 및 생물학적 특성)

  • Kim, Jae-Ok;Shin, Hyun-Sang;Yoo, Ji-Hyun;Lee, Seung-Heon;Jang, Kyu-Sang;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.253-263
    • /
    • 2011
  • This study was conducted to gain preliminary data for restoration and management of constructed small-scale ponds in paddy fields through analysis of their physicochemical and biological properties. A field survey was performed at 13 small-scale ponds located in paddy fields from August 2009 to October 2010. Structural properties, water quality, soil characteristics and fish fauna were measured. Results showed that small-scale ponds without frames might lose their function over time because of crumbling walls. Therefore, it is necessary for these ponds to have frames for soil protection and sustainable maintenance. Chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) concentration were higher than the water quality standard for agricultural water in small-scale ponds. In particular, TN concentration was 8.03 mg $L^{-1}$ and over 8 times the water quality standard because of the presence of livestock such as cows and pigs in the study areas. Sand, organic matter and available phosphorus contents of soil in small-scale ponds was 53.4${\pm}$16.6%, 21.8${\pm}$9.74 g $kg^{-1}$ and 12.8${\pm}$7.59 mg $kg^{-1}$, respectively indicating that sand and available phosphorus contents were suitable for plants in small-scale ponds, but organic matter contents was somewhat low in newly constructed small-scale ponds, and would take some time to stabilize for plant growing. Fish fauna was not diverse with only 4 species at all sites surveyed. Collected fishes share a common feature that they all inhabit paddy fields or canals with shallow water depth. In this study, all ponds were not linked to the streams and canals around them. It appears that connection to adjacent streams was the major factor controlling fish fauna in small-scale ponds. The results of statistical analysis were classified into three groups. Factor 1 was 26.3%, which shows a structural properties such as area and depth of small-scale pond. As for factor 2, it appears on 20.1%, showing water quality like a TP, suspended solids (SS) and COD. Small-scale ponds were classified into three groups by factor scores. Group I consisted of 6 small-scale ponds, which were larger than the others. Group III had higher water quality than the others. We conclude that the most important points to be considered for restoration and management of small-scale ponds is connection with adjacent streams or ditches and depth and size of the small-scale pond.

Mitochondrial DNA Mutation (3243A→G,1555A→4G,7445A→G) in Noise-Induced (소음성 난청에서의 Mitochondrial DNA A3243G, A1555G, A7445G 돌연변이)

  • Hong Young-Seoub;Nishio Hisahide;Lee Myeong-Jin;Kwak Ki-Young;Hwang Chan-Ho;Shin Dong-Hoon;Kwak Jong-Young;Lee Yong-Hwan;Kim Jong-Min;Kim Joon-Youn
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.913-919
    • /
    • 2004
  • Mitochondrial DNA mutations have been reported in recent years in association with sensorineural hering loss. The purpose of this study is to identify the association between the noise-induced sensorineural hearing loss and the A to G mutation at nucleotide 3243, 1555, 7445 of mitochondrial DNA. Study subjects were established by history and chart review, and audiological and clinical data were obtained. Blood was sampled from 214 normal controls, 102 noise-induced hearing loss, and 28 sensorineural hearing loss. The DNA of these individuals were extracted, and mitochondrial DNA fragments were analyzed by polymerase chain reaction. Subsequently, the coding sequence of mitochondrial DNA 3243, 1555, 7445 were sequenced, and compared to the normal sequence, and all sequence variations were analyzed by restriction enzymes. Mitochondrial DNA mutations $(3243A{\rightarrow}G,\;1555A{\rightarrow}4G,\;7445A{\rightarrow}G)$ were not detected by polymerase chain reactions in any patients with noise-induced hearing loss, sensorineural hearing loss, and normal controls. The DNA sequencing of PCR products did not revealed an A to G substitution at nucleotide 3243, 1555, 7445 of mitochondrial DNA. The noise-induced sensorineural hearing loss was not associated with mitochondrial DNA mutation $(3243A{\rightarrow}G,\;1555A{\rightarrow}4G,\;7445A{\rightarrow}G)$.

Microtubule-damaging Chemotherapeutic Agent-mediated Mitotic Arrest and Apoptosis Induction in Tumor Cells (미세소관-손상 항암제 처리에 의한 세포주기의 정지 및 에폽토시스 유도)

  • Jun, Do Youn;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.376-386
    • /
    • 2016
  • Apoptosis induction has been proposed as an efficient mechanism by which malignant tumor cells can be removed following chemotherapy. The intrinsic mitochondria-dependent apoptotic pathway is frequently implicated in chemotherapy-induced tumor cell apoptosis. Since DNA-damaging agent (DDA)-induced apoptosis is mainly regulated by the tumor suppressor protein p53, and since more than half of clinical cancers possess inactive p53 mutants, microtubule-damaging agents (MDAs), of which apoptotic effect is mainly exerted via p53-independent routes, can be promising choice for cancer chemotherapy. Recently, we found that the apoptotic signaling pathway induced by MDAs (nocodazole, 17α-estradiol, or 2-methoxyestradiol) commonly proceeded through mitotic spindle defect-mediated prometaphase arrest, prolonged Cdk1 activation, and subsequent phosphorylation of Bcl-2, Mcl-1, and Bim in human acute leukemia Jurkat T cells. These microtubule damage-mediated alterations could render the cellular context susceptible to the onset of mitochondria-dependent apoptosis by triggering Bak activation, Δψm loss, and resultant caspase cascade activation. In contrast, when the MDA-induced Bak activation was inhibited by overexpression of anti-apoptotic Bcl-2 family proteins (Bcl-2 or Bcl-xL), the cells in prometaphase arrest failed to induce apoptosis, and instead underwent mitotic slippage and endoreduplication cycle, leading to formation of populations with 8N and 16N DNA content. These data indicate that cellular apoptogenic mechanism is critical for preventing polyploid formation following MDA treatment. Since the formation of polyploid cells, which are genetically unstable, may cause acquisition of therapy resistance and disease relapse, there is a growing interest in developing new combination chemotherapies to prevent polyploidization in tumors after MDA treatment.

Differential Effects of Acute and Chronic Exercise on Autophagy-related Gene Expression in Drosophila melanogaster (일회성 및 만성적 유산소운동이 초파리의 자가포식 관련 유전자 발현에 미치는 영향)

  • Kim, Hee Yeon;Kim, Hye Jin;Hwang, Ji Sun;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1180-1186
    • /
    • 2014
  • Autophagy, the lysosomal degradation pathway, is an intracellular recycling system that is necessary for the metabolic benefits of exercise and for producing lasting beneficial effects of exercise in various diseases. However, the most recent studies have only examined the effect of a single bout of exercise or resistance exercise on autophagic responses. To determine the differential effects of acute and chronic exercise on the expression of autophagy-related genes in D. melanogaster, white-eyed mutant D. melanogaster were assigned randomly to four groups: control, acute exercise, 2 hr chronic exercise, and 3 hr chronic exercise. The flies were exercised using a mechanized platform known as the Power Tower. Our results revealed that a single bout of exercise resulted in increased mRNA levels of the Atg8a gene (~20%, p<0.05). However, Atg1 and Atg6 mRNA expression were not induced by acute exercise. Transcript levels of Atg6 (~29%, p<0.05) related to the nucleation of autophagosomes were significantly induced by 2 hr of chronic exercise. However, this chronic exercise was not enough to increase Atg1 and Atg8a mRNA expression. On the other hand, 3 hr of exercise for 7 days significantly increased Atg1, Atg6, and Atg8a gene expression-about 57%, 37%, and 71%, respectively (p<0.05). These results suggest that a single bout of exercise is not enough to induce full activation of selected autophagy-related genes in D. melanogaster. Our results demonstrated that chronic regular exercise induced autophagy-related gene expression, suggesting that chronic regular exercise training might be required to activate autophagic responses important for producing beneficial effects of exercise in various diseases.

Toll-like Receptor 4-mediated Apoptotic Cell Death in Primary Isolated Human Cervical Cancers (부인과질환 특이적 종양의 TLR4 매개성 apoptosis 유발에 관한 연구)

  • Won, Jinyoung;Hong, Yunkyung;Park, Sookyoung;Kim, Joo-Heon;Hong, Yonggeun
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.718-725
    • /
    • 2018
  • Toll-like receptor 4 (TLR4) has been implicated in cell proliferation and apoptosis in several types of cancer. In this study, the impact of TLR4 activation on apoptotic cell death in gynecologic cancers induced by lipopolysaccharide (LPS) was investigated. Cervical cancer cell lines were produced from isolated surgical specimens supplied by Paik Hospital. The primary cultures of normal myometrium and gynecologic cancers, including cervical, endometrial, and ovarian cancers, were used to examine the differences in morphological characteristics between normal and cancerous cells. A reverse transcription polymerase chain reaction analysis was used to determine the relative expression levels of TLR4 gene involved in apoptosis-associated signaling in cervical cancer cells. The cancer cell colonies showed a tendency to reach high levels of confluency compared with normal cells. In addition, an enhanced growth rate and loss of contact inhibition were observed in gynecologic cancer cells compared with normal cells (doubling times of 16.6 hr vs. 26 hr, respectively). The expression level of ITGA5, an alpha-5 integrin marker, was upregulated in normal myometrial cells, but this tendency was not exhibited in cervical cancer cells. Furthermore, p53 tumor suppressor gene expression was upregulated, whereas TLR4 and caspase-3 gene expressions were downregulated in cervical cancer cells. Notably, the expression levels of TLR4 and caspase-3 were increased significantly in LPS-treated cancer cells compared with those in non-LPS-treated cells. These results suggest that the TLR4-mediated caspase-dependent apoptotic signaling pathway could be suggested as a therapeutic target for the treatment of gynecologic cancers, including cervical cancers.