• Title/Summary/Keyword: 연속다짐

Search Result 18, Processing Time 0.021 seconds

A Study on Analysis Method for Roller Compaction Work (다짐공사에 대한 롤러의 효율적 품질관리 방안 연구)

  • Lee, Soo Min;Lee, Seung Soo;Yu, Sang Hoon;Seo, Jong Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.621-627
    • /
    • 2017
  • In this study, GPS (Global Positioning System) is applied to rollers for quality control problems caused by empirical judgment of compaction construction. In addition, database and 3D modeling of location information can eliminate unnecessary compaction or excessive compaction, thereby improving quality and shortening the time. This paper presents a methodology of ICMV (Intelligent Compaction Measurement Values) analysis by designing a intelligent compaction method using an accelerometer. Detailed method of ICMV analysis includes CMV (Compaction Meter Value) analysis which can quickly and conveniently evaluate the compaction of the compacted ground.

Development of an Intelligent Compaction Evaluation Method Based on Statistics Analysis (통계해석에 기초한 연속다짐평가기법 개발)

  • Park, Keun-Bo;Kim, Ju-Hyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.8
    • /
    • pp.5-16
    • /
    • 2011
  • The objective of this paper is to assess the potential use of the resilient force of the ground obtained from an accelerometer and to propose a new compaction control process. Several comprehensive field experimental programs were conducted to analyze the correlation of compaction results obtained from an accelerometer and conventional test methods (e.g. the plate load test and field density test). This study focused on comparing the compaction results obtained from an accelerometer with conventional test results statistically. Based on the statistical analysis results, impact and resilient force measured from an accelerometer, mounted on the drum of a roller are very useful factors for continuous compaction control. A new compaction criteria determination process using an accelerometer is also proposed in this study.

Development of Intelligent Compaction System for Efficient Quality Control (효율적 품질관리를 위한 지능형 다짐 시스템 개발)

  • Lee, Soomin;Park, Sangil;Lee, Riho;Seo, Jongwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.751-760
    • /
    • 2018
  • Currently, the quality measurement of the work is carried out by the supervisor's visual inspection, as the workers individually judge the number of resolutions, thickness, speed and vibration. After work, we are conducting follow-up work through traditional spot test, which is less representative. Therefore, it is impossible to check the results of the resolution, and there is always the possibility that problems will arise due to poor construction. This study demonstrates the feasibility of using the continuous compaction strength measurement method by comparing the continuous compaction strength measurement method and the conventional compaction strength measurement method after performing the compaction in the actual field scale in various test conditions. The validity is verified by analyzing the Compaction Meter Value of an Intelligent Compaction roller composed of a Global Positioning System and an accelerometer, Based on the proven results, a full range of quality can be confirmed without a single test. The quality confirmation is visualized in the compaction control program developed in this study, This enables the field manager to perform real-time quality monitoring at the same time as compaction.

Application of the New Degree of Compaction Evaluation Method (새로운 다짐도 평가기법의 적용성에 관한 연구)

  • Park, Keun-Bo;Kim, Ju-Hyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.5-14
    • /
    • 2012
  • CMV(Compaction Meter Value) obtained from compaction results using an accelerometer, which measures the impact on the ground and the resilient force of the ground, is compared with the other degree of compaction through regression analysis. As a result, there is no correlation between results from conventional test methods (e.g., the plate load test and field density test) and the degree of compaction evaluated by either the Geogauge or the dyanamic cone penetrometer. To assess the possibility of replacing the conventional test methods with new test methods using CMV, several degrees of compaction tests were carried out. Those results show that the CMV obtained from compaction results using an accelerometer can be used as a substitute for conventional methods to evaluate the stiffness characteristics of compacted soil.

The Effects of Tire Inflation Pressure on Soil Compaction and Tractive Performance of Tractor (타이어공기압에 따른 트랙터의 견인성능과 토양다짐)

  • 박원엽;이규승;오만수
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.02a
    • /
    • pp.15-22
    • /
    • 2002
  • 본 연구에서는 타이어의 공기압이 농용트랙터의 견인성능과 토양다짐에 미치는 효과를 실험적으로 조사하였으며, 다음과 같은 결과를 얻었다. 1) 타이어공기압에 따른 트랙터의 견인성능 실험 결과, 공기압의 감소는 트랙터의 운동저항은 감소시키고, 견인력과 견인효율은 증대시키는 것으로 나타났다. 따라서 연약지에서 운용되는 트랙터는 공기압의 조절을 통해(최소 허용 공기압까지 타이어공기압의 감소를 통해) 견인성능과 작업성능을 향상시킬 수 있을 것으로 판단된다. 2) 트랙터의 타이어공기압과 통과횟수의 증가는 모두 토양다짐을 증가시키는 것으로 나타났다. 따라서 토양다짐을 줄이기 위해서는 트랙터가 통과한 궤적상을 연속해서 통과할 수 있도록 작업 계획을 세우면 전체 경작 면적에 대한 토양 다짐을 줄일 수 있을 것으로 판단된다. 또한 타이어의 공기압을 최소 허용 공기압 수준까지 감소시킬 경우 토양다짐을 최소화할 수 있을 것으로 판단된다. 3) 위의 결과로부터 트랙터의 작업성능의 향상과 토양다짐의 최소화는 타이어공기압의 조절을 통해 어느 정도 이를 수 있는 것으로 판단된다. 따라서 이러한 목적을 달성하기 위해서는 운전석에 설치된 제어판을 통해 지면의 상태에 따라 타이어의 공기압을 운전자가 쉽게 조절할 수 있는 최첨단 기술인 CTI시스템을 농용트랙터에 적용하는 연구가 필요한 것으로 판단된다.

  • PDF

Characteristics of Developed Earth Pressure by Backfill Compaction (뒷채움 시공시의 다짐토압 특성)

  • 노한성
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.163-171
    • /
    • 2001
  • It is important to pay careful attention to the backfill construction for the structural integrity of concrete box culvert. To increase the structural integrity of culvert good compaction by the dynamic compaction roller with big capacity is as effective as good backfill materials. However structural distress of the culvert could be occurred due to the excessive earth pressure by great dynamic compaction load. In this study, two box culverts were constructed with change compaction materials and construction methods. Two type of on-site soils such as subbase and subgrade materials were used as backfill materials. In most case, dynamic compaction rollers with 11 to 12 ton weights were used and vibration frequency were applied from 2000 to 2500 rpm for the great compaction energy. Backfill compactions with good quality soils were carried out to examine the effect of cushions on dynamic lateral soil pressure. Expanded polystyrene (EPS) and rubber of tire were adapted as cushion materials and they are set on the culverts before backfill construction. This paper presents the main results on the characteristics of dynamic earth pressures. Test result indicates that the amounts of increased dynamic pressures are affected with backfill materials, depth of pressure cell, and compaction condition. The earth pressure during compaction can give harmful effect to box culvert because the value of dynamic earth pressure coefficient $(\DeltaK_{dyn}=\DeltaK\sigma_h\DeltaK\sigma_v)$ during compaction is greater than that of static condition. It was observed that cushion panels of EPS(t=10cm) and rubber(t=5cm) are effective to mitigate dynamic lateral pressure on the culverts.

  • PDF

A Study on Various Soil Stiffness Evaluation Methods with Field Test (현장시험을 통한 다양한 지반강성 평가방법에 대한 연구)

  • Yoo, Wan-Kyu;Kim, Byoung-Il;Kim, Ju-Hyong;Park, Keun-Bo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1373-1380
    • /
    • 2010
  • The plate loading test(PLT) and the field density test are mainly used on the construction of embankments to control the compaction of a limited layer thickness. These two test methods are very time consuming and inefficient, but they are still commonly used as the methods of quality control for soil compaction. In the last 3 decades, many devices such as geogauge, light falling weight deflectometer(LFWD) and dynamic cone penetrometer(DCP) etc., have been introduced into the engineering market with the objective of acquiring in situ stiffness properties of the compacted soil layers. Recently, a new type of sensor, called compactometer, which in mounted on the drum of a roller and measures impact forces continuously with GPS, called as Continuous Compaction Control(CCC), has come into use in many countries such as America, Germany, Japan and so on. The main objective of this paper is to assess the potential use of these new devices as quality control and assurance devices for compacted soil layers. Based on this study, compactometer and the LFWD results werestrongly correlated with the result obtained from the PLT and the field density test.

Substructure Evaluation of Pavement due to Excavation and Recompaction Sequences for Pipe Installation (굴착, 관 매입 및 다짐 연속과정에 따른 포장하부구조 강성펑가)

  • Lim, Yu-Jin;Park, Jae-Beom
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.239-247
    • /
    • 2009
  • Pipe installation following excavation of pavement and underlying-soils induces settlements, cracks and bad roughness near utility cut. This study is to use PMT and LDWT in order to evaluate stiffness and/or degree of compaction of sublayers and backfill in utility cut section because no specially designed efforts for evaluating stiffness condition of the substructures below new pavement after pipe installation are offered at this time. From test results of PMT, comparable stiffness and/or degree of compaction in recompaction process is not obtained comparing to that of the existing sublayers before excavation. Thickness of the new surface layer after pipe installation must be designed thicker than that of the existing surface layer. It is verified that LDWT comparing to PMT is effective only to get stiffness and/or degree of compaction within limited depth from surface of materials, but it is not useful to evaluate stiffness of substructures in full depth in case of utility cut.

  • PDF

Study of the Intelligent Compaction Evaluation (연속 다짐 평가에 관한 연구)

  • Park, Keub-Bo;Kim, Ju-Hyong;Cho, Sam-Deok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.722-729
    • /
    • 2010
  • In this study, we considered the development for degree of compaction for intelligent compaction. In practice, any direct or indirect method can be used as a intelligent compaction method. A series of field tests was conducted using an accelerometer. This is quick and simple indirect methods of measuring soil stiffness. Each result was compared with the results from a plate load test. A prototype device for intelligent compaction was developed, and we evaluated its performance.

  • PDF