• Title/Summary/Keyword: 연속구조

Search Result 2,258, Processing Time 0.035 seconds

Effects of Aluminum Addition and Recycle of NaOH Waste Solution on the Quality of Zeolite Synthesized from Fly Ash (알루미늄 첨가 및 NaOH 폐용액의 재활용이 Fly Ash로부터 합성한 Zeolite의 품질에 미치는 영향)

  • Choi, Choong-Lyeal;Lee, Dong-Hoon;Park, Man;Song, Kyung-Sik;Rhee, In-Koo;Choi, Jyung;Kim, Jang-Eok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.72-77
    • /
    • 2005
  • This study was performed to examine the effects of aluminum addition and recycle of NaOH waste solution on CEC and crystallinity of zeolite synthesized from fly ash. The added aluminum was used as the source of zeolite framework in zeolitization of fly ash. CEC and crystallinity of Na-P1 zeolite synthesized with aluminum addition were increased from 285 to $365cmol_c\;kg^{-1}$ and from 44.3 to 57.1% compared to that of simple hydrothermal treatment, respectively. The recycled NaOH solution did not affect the CEC of reaction products, though the crystallinity was decreased a little. Therefore, the additional supply of aluminum could improve the quality of zeolite synthesized from fly ash and the recycle of NaOH during zeolite synthesis can save the chemical without any adverse effects in the quality of synthesized seolite.

Configuration of Fuel Cell Power Generation System through Power Conversion Device Design (전력변환장치 설계를 통한 연료전지 발전시스템 구성)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.129-134
    • /
    • 2021
  • Recently, the demand for electricity is gradually increasing due to the rapid industrial development and the improvement of living standards. In the case of Korea, which is highly dependent on fossil fuels due to such a surge in electricity demand, reduction and freezing of greenhouse gas emissions due to international environmental regulations will immediately lead to a contraction in industrial activities. Accordingly, there are many difficulties in competition with advanced countries that want to link the environment with the country's industrial production activities, and the development of alternative energy as a countermeasure is of great interest around the world. Among these new power generation methods, small-scale power generation facilities with relatively small capacity include photovoltaic generation, wind power generation, and fuel cell generation. Among them, the fuel cell attracts the most attention in consideration of continuous operation, high power generation efficiency, and long-term durability, which are important factors for practical use. Therefore, in this paper, the fuel cell power generation system was researched and constructed by designing the power conversion circuit necessary to finally obtain the AC power used in our daily life by using the DC power generated from the fuel cell as an input.

Deactivation causes of dry sorbents for post-combustion CO2 capture (연소 후 이산화탄소 포집용 흡수제의 비활성화 원인 규명)

  • Cho, Min Sun;Chae, Ho Jin;Lee, Soo Chool;Jo, Seong Bin;Kim, Tae young;Lee, Chul Ho;Baek, Jeom-In;Kim, Jae Chang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.253-258
    • /
    • 2019
  • Several materials are used to design the sorbents applied in a fast-fluidized bed process for post-combustion $CO_2$ capture. In this study, $K_2CO_3$-based dry sorbent (KMC) was prepared by using Micro-cell C (MCC), one of the materials used to design the sorbent, and then its $CO_2$ sorption and regeneration properties were evaluated. KMC sorbent showed a low $CO_2$ capture capacity of 21.6 mg $CO_2/g$ sorbent, which is about 22% of the theoretical value (95.4 mg $CO_2/g$ sorbent) even at 1 cycle, and showed a low $CO_2$ capture capacity of 13.7 mg $CO_2/g$ sorbent at 5 cycles. It was confirmed that the KMC sorbent was deactivated due to the formation of a $K_2Ca$ $(CO_3)_2$ phase, resulting from the reaction of the $K_2CO_3$ with the Ca component contained in the MCC. In order to solve the deactivation of sorbent, and KM8 sorbent was prepared by adding the process of calcining the MCC at $850^{\circ}C$. The KM8 sorbent showed a high $CO_2$ capture capacity of 95.2 mg $CO_2/g$ sorbent and excellent regeneration property. Thus, it was confirmed that the deactivation of the sorbent could be solved by adding the calcining step to remove the side reaction causing material.

Design of 4th Order ΣΔ modulator employing a low power reconfigurable operational amplifier (전력절감용 재구성 연산증폭기를 사용한 4차 델타-시그마 변조기 설계)

  • Lee, Dong-Hyun;Yoon, Kwang-Sub
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1025-1030
    • /
    • 2018
  • The proposed modulator is designed by utilizing a conventional structure employing time division technique to realize the 4th order delta-sigma modulator using one op-amp. In order to reduce the influence of KT/C noise, the capacitance in the first and second integrators reused was chosen to be 20pF and capacitance of third and fourth integrators was designed to be 1pF. The stage variable technique in the low power reconfigurable op-amp was used to solve the stability issue due to different capacitance loads for the reduction of KT/C noise. This technique enabled the proposed modulator to reduce the power consumption of 15% with respect to the conventional one. The proposed modulator was fabricated with 0.18um CMOS N-well 1 poly 6 metal process and consumes 305uW at supply voltage of 1.8V. The measurement results demonstrated that SNDR, ENOB, DR, FoM(Walden), and FoM(Schreier) were 66.3 dB, 10.6 bits, 83 dB, 98 pJ/step, and 142.8 dB at the sampling frequency of 256kHz, oversampling ratio of 128, clock frequency of 1.024 MHz, and input frequency of 250 Hz, respectively.

Precise Measurements of the Along-track Surface Deformation Related to the 2016 Kumamoto Earthquakes via Ionospheric Correction of Multiple-Aperture SAR Interferograms (다중개구간섭영상의 이온층 보정을 통한 2016 구마모토 지진의 비행방향 지표변위 정밀 관측)

  • Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1489-1501
    • /
    • 2018
  • In 2016 Kumamoto, Japan, the foreshocks of $M_j$ 6.5 and 6.4, mainshock of $M_j$ 7.3 besides more than 2,000 aftershocks occurred in succession. Large surface deformation occurred due to this serial earthquakes and three-dimensional measurements of the deformation have been presented for the study of fault structures (Baek, 2017). The 3d measurements retrieved from two ascending pairs (20160211_20160602, 20151119_20160616) and a descending pair (20160307_20160418) acquired from ALOS PALSAR-2. In order to avoid mixing ionospheric error components on along-track surface deformation, the descending multiple-aperture interferogram, which do not contain the deformation of aftershocks after 20160418, was utilized. For these reason, there was a temporal discrepancy of about 2 months in extracting the north-south deformation. In this study, we applied a directional filter based ionospheric correction to ascending multiple-aperture interferograms, in order to reduce this discrepancy and understand more accurate fault movements. As a result of the ionospheric correction, an additional displacement signal was observed nearby fault lines. The root-mean-squared errors compared to GPS were about 9.87, 8.13 cm respectively. These results show improvements of 4.8 and 6.4 times after ionospheric correction. We expected that these along-track measurements would be used to decide more accurate movements of faults related to the 2016 Kumamoto Earthquake.

Analysis of Magnetic Flux Leakage based Local Damage Detection Sensitivity According to Thickness of Steel Plate (누설자속 기반 강판 두께별 국부 손상 진단 감도 분석)

  • Kim, Ju-Won;Yu, Byoungjoon;Park, Sehwan;Park, Seunghee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.53-60
    • /
    • 2018
  • To diagnosis the local damages of the steel plates, magnetic flux leakage (MFL) method that is known as a adaptable non-destructive evaluation (NDE) method for continuum ferromagnetic members was applied in this study. To analysis the sensitivity according to thickness of steel plate in MFL method based damage diagnosis, several steel plate specimens that have different thickness were prepared and three depths of artificial damage were formed to the each specimens. To measured the MFL signals, a MFL sensor head that have a constant magnetization intensity were fabricated using a hall sensor and a magnetization yoke using permanent magnets. The magnetic flux signals obtained by using MFL sensor head were improved through a series of signal processing methods. The capability of local damage detection was verified from the measured MFL signals from each damage points. And, the peak to peak values (P-P value) extracted from the detected MFL signals from each thickness specimen were compared each other to analysis the MFL based local damage detection sensitivity according to the thickness of steel plate.

Seismic Weathering Correction Using IRS Approach: A Test to the Synthetic Data of Cheongju Granitic Bodies (IRS(간섭 굴절보정)를 이용한 탄성파 풍화대 보정: 청주 화강암체에 대한 적용)

  • Kang, Yu-Gyeong;Sa, Jin-Hyeon;Kim, Ji-Soo;Kim, Jong-Woo
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.153-162
    • /
    • 2019
  • Rapid variations in the geometry (i.e., thickness) of the refractor and low velocities affect greatly the imaging of the reflectors of land seismic data. Conventional solutions to obtain the weathering models utilizes first break picking method, which requires time consuming steps and causes the human error in picking the first arrivals. A new interferometric approach (interferometric refraction statics, IRS) which utilizes the first arrival signal (S/N enhanced by refraction convolution stack) instead of first break picking, is tested in this study to the synthetic data from the velocity structure provided by surface geophysics (refraction, MASW) and borehole geophysics (tomography, SPS logging) for the Cheongju granitic bodies. The results of IRS approach are found to be better than the ones from conventional first break picking in terms of continuities and horizontal resolution of the reflectors. The unresolved long-wavelength statics in brute stack are much removed by IRS weathering correction and the overlying refractors (the base of shallow weathering zone) are incidentally delineated in the refraction convolution stack.

Performance Evaluation of Mid-IR Spectrometers by Using a Mid-IR Tunable Optical Parametric Oscillator (중적외선 광 파라메트릭 발진기를 이용한 중적외선 분광기 성능 평가)

  • Nam, Hee Jin;Kim, Seung Kwan;Bae, In-Ho;Choi, Young-Jun;Ko, Jae-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.4
    • /
    • pp.154-158
    • /
    • 2019
  • We have used a mid-IR (mid-infrared) continuous-wave (cw) optical parametric oscillator (OPO), developed previously and described in Ref. 12, to build a performance-evaluation setup for a mid-IR spectrometer. The used CW OPO had a wavelength tuning range of $ 2.5-3.6{\mu}m$ using a pump laser with a wavelength of 1064 nm and a fan-out MgO-doped periodically poled lithium niobate (MgO:PPLN) nonlinear crystal in a concentric cavity design. The OPO was combined with a near-IR integrating sphere and a Fourier-transform IR optical spectrum analyzer to build a performance-evaluation setup for mid-IR spectrometers. We applied this performance-evaluation setup to evaluating a mid-IR spectrometer developed domestically, and demonstrated the capability of evaluating the performance, such as spectral resolution, signal-to-noise ratio, spectral stray light, and so on, based on this setup.

Fifty Years of Scientific Ocean Drilling (1968-2018): Achievements and Future Direction of K-IODP (해양 과학시추 50년 (1968-2018): 한국의 성과 및 미래 방향)

  • KIM, GIL YOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.30-48
    • /
    • 2019
  • The year 2018 is the $50^{th}$ anniversary of scientific ocean drilling. Nevertheless, we know more about the surface of the moon than the Earth's ocean floor. In other words, there are still no much informations about the Earth interior. Much of what we do know has come from the scientific ocean drilling, providing the systematic collection of core samples from the deep seabed. This revolutionary process began 50 years ago, when the drilling vessel Glomar Challenger sailed into the Gulf of Mexico on August 11, 1968 on the first expedition of the federally funded Deep Sea Drilling Project (DSDP). DSDP followed successively by Ocean Drilling Program (ODP), Integrated Ocean Drilling Program (old IODP), and International Ocean Discovery Program (new IODP). Concerning on the results of scientific ocean drilling, there are two technological innovations and various scientific research results. The one is a dynamic positioning system, enables the drilling vessel to stay fixed in place while drilling and recovering cores in the deep water. Another is the finding of re-entry cone to replace drill bit during the drilling. In addition to technological innovation, there are important scientific results such as confirmation of plate tectonics, reconstruction of earth's history, and finding of life within sediments. New IODP has begun in October, 2013 and will continue till 2023. IODP member countries are preparing for the IODP science plan beyond 2023 and future 50 years of scientific ocean drilling. We as IODP member also need to participate in keeping with the international trend.

Comparative analysis of the Korean mathematics curriculum contents based on the TIMSS 2019 mathematics assessment framework (TIMSS 2019 수학 평가틀에 기반한 우리나라 수학과 교육과정 내용 비교 분석)

  • Choi, In Seon
    • Journal of the Korean School Mathematics Society
    • /
    • v.23 no.4
    • /
    • pp.449-468
    • /
    • 2020
  • TIMSS is a representative international comparative study that analyzes changes in mathematics and science achievement, and it collects information on the educational system, curriculum, teaching and learning situation of participating countries as well as research and check, and provides implications for each country's mathematics and science education. Although domestic TIMSS studies focused on the results of achievement related to the evaluation of mathematics, not many have taken a closer look at the content and characteristics of the assessment framework. Therefore, the purpose of this study was to analyze the characteristics of the TIMSS 2019 mathematics assessment framework, and to derive implications for the mathematics curriculum and mathematics learning by examining the students' study time in light of the Korean mathematics curriculum. The implications derived from the results of this study are summarized as follows: First, it is necessary to check the connection between content elements in the mathematics and education process. Second, it is necessary to check the appropriateness and connectivity of the learning timing of the content elements in the mathematics and education courses. Finally, it is necessary to verify that the hierarchy of content areas and the structure of content systems in mathematics and education courses are consistent with the direction of mathematics education at the international level. This study can be used as a basis for mathematics and curriculum revisions, and can be used to set directions for the development of large-scale evaluation frameworks.