• Title/Summary/Keyword: 연소 배출물

Search Result 221, Processing Time 0.026 seconds

Effect of Reentrant Type Bowl Geometry on Combustion Characteristics in Diesel Engine -Effect of Reentrant Angle and Cupola Height of Bowl Center- (리엔트런트형 연소실 형상이 디젤기관의 연소특성에 미치는 영향 -리엔트런트 각도 및 중앙돌기부 높이의 효과-)

  • Kwon, S.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.37-45
    • /
    • 1995
  • Effect of reentrant type bowl geometry on combustion characteristics was investigated in a D.I. diesel engine. The main factor was the cupola height of bowl center and the reentrant angle of combustion chamber, and the cylinder pressure, engine performance and emissions of the engine using the total 11 kinds of the combustion chamber were measured by test. The results are as follows. The NOx decreases by increasing the cupola height of bowl center because it makes the decreasing of maximum combustion pressure by the heat loss and smooth combustion from good airflow. The smoke increases by increasing the reentrant angle at high speed range of the engine, but decrease at low and medium speed range until the reentrant angle becomes $15^{\circ}$.

  • PDF

The study of combustion characteristics and emissions with the variation of design factor on slit gas burner (슬릿버너에서 형상변화가 연소특성 및 배기배출물에 미치는 영향)

  • Kim, Tae-Woo;Cho, Seung-Wan;Chang, Young-June;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.314-319
    • /
    • 2005
  • In this study, the combustion characteristics were investigated with the variation of design factors on multiple slit gas burner. The design factors consist of slit height, width, spacing, and inner length. The combustion characteristics were made analysis of the CO emission and NOx emission by using CO analyzer and NOx analyzer. The lower perimeter to area and the narrow spacing extends the lift-flame limit. The CO emission increases with the increasing perimeter to area ratio at the same condition. The NOx emission is found to be less significant with the port perimeter to area ratio. The flame interference might highly depend on the spacing and port perimeter to area ratio, and it also affects the burner performance.

  • PDF

[$CO_2$] Emission from Carbon of Marine Fuel Oil in New Ships (신조선에서 연료탄소로부터의 $CO_2$ 배출 특성)

  • Jang Mi-Suk;Kim Eun-Chan;Moon Il-Sung;Lee Jae-Woo;Kwon Oh-Sin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.3
    • /
    • pp.148-153
    • /
    • 2006
  • This study dealt with the measurement of exhausted gas concentration, the estimation of a combustion efficiency, and the review of IMO indexing. We concentrated on establishing the basic data to take a counterplan coping with $CO_2$ regulations. The average combustion efficiency was 98% in shop test of new engines and 96.5% in sea trial test of new ships, respectively. It would become lower for the old engine or/and ship. High combustion efficiency results in high $CO_2$ emission and low combustion efficiency results in high emission of incomplete combustion products. The efficient method reducing $CO_2$ emission without an increase in noxious air pollutants would be the development of a substitute fuel and the fuel-efficient and economical engine, and the fair play among shipping agencies in a ship speed. In reviewing of IMO indexing, it is necessary to begin by analyzing the carbon content of a marine fuel for a precise estimates.

  • PDF

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part I. Combustion Characteristics of Low NOx (대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part I. 저 NOx 연소특성)

  • Cho, Seo-Hee;Lee, Kee-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.8-16
    • /
    • 2019
  • One of the methods for low-pollution combustion, flue gas recirculation(FGR) is effective to reduce nitrogen oxides and it was applied in CH4/air premixed counterflow flames to identify the change of flame characteristics and NOx mechanisms. Considering that the mole fraction of the products varied depending on the strain rates, the major products: CO2, H2O, O2 and N2 were recirculated as a diluent to reflect the actual combustion system. With the application of the FGR technique, a turning point of maximum flame temperature under certain strain rate condition was found. Furthermore as the recirculation ratio increased, the tendency of NO was changed before and after the turning point and the analysis on thermal NO and Fenimore NO production was conducted.

An Experimental Investigation of Combustion Characteristics in a Model Combustor by Reproduction of GE 7FA+e DLN-2.6 Gas Turbine (GE 7FA+e DLN-2.6 연소기를 모사한 모형 가스터빈 연소기의 연소불안정 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Lee, Jang-Su;Park, Seong-Soon;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.231-235
    • /
    • 2009
  • The mainly objectives of this study was a combustion dynamics and instability characteristics in a model dump type combustor which is scale down of GE 7FA+e DLN 2.6 gas turbine combustor with running at Seo-Inchon combined cycle power plant. Model gas turbine injector has 2-stage swirl vane and it's reduced 1/3 size of the original one. The shape of plenum and combustor were designed for similar acoustic characteristics. As the result, this research have been shows the peak frequency of model combustor was changed quarter-wave mode to Helmholtz resonator mode in plenum and longitudinal mode in dump combustor at unstable flame conditions caused by the different of combustor temperature and fuel-air mixture distributions.

  • PDF

Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in Power Plant Boilers with FGR System (FGR 시스템 공력 플랜트 보일러의 성능 및 배기 배출물에 미치는 재순환 배기의 영향)

  • Bae, Myung-Whan;Jung, Kwong-Ho;Choi, Seung-Chul;Cho, Yong-Soo;Kim, Yi-Suk
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1686-1691
    • /
    • 2004
  • The effect of recirculated exhaust gas on performance and exhaust emissions with FGR rate are investigated by using a natural circulation, pressurized draft and water tube boiler with FGR system operating at several boiler loads and over fire air(OFA) damper openings. The purpose of this study is to apply the FGR system to a power plant boiler for reducing $NO_{x}$ emissions. To activate the combustion, the suction damper of two stage combustion system installed in the upper side of wind box is opened by handling the lever between $0^{\circ}$ and $90^{\circ}$ , and the OFA with 0 to 20% into the flame is supplied, as the combustion air supplied to burner is reduced. It is found that the fuel consumption rate divided by evaporation rate does not show an obvious tendency to increase or decrease with rising the FOR rate, and $NO_{x}$ emissions are decreased, at the same OF A damper opening, as FOR rates are elevated and boiler loads are dropped.

  • PDF

A Experimental Study on the Emission Characteristics in Stroke Propulsion Diesel Engine for Ship (선박용 주기용 4행정 디젤엔진의 배기배출물 배출 특성에 관한 실험적 연구)

  • 김현규;김종기;전충환;장영준
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.121-127
    • /
    • 2002
  • Environmental protection on the ocean has been interested and nowadays the International Maritime Organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the emission characteristics of 4 stroke propulsion diesel engine in E2 cycle (constant speed) and E3 cycle (propeller curved speed). Also the effects of important operating parameters in terms of intake air pressure and temperature, and maximum combustion pressure are described on the specific emissions. Emissions measurement and calculation are processed according to IMO Technical Code. The results show that NOx emission level in E3 cycle is higher than E2 cycle due to lower engine speed and lower maximum combustion pressure by retarding fuel injection timing. Intake air temperature has strong influence on NOx emission production. And CO, HC emissions are not affected by maximum combustion pressure and intake air pressure and temperature.

  • PDF

A Study of Emulsion Fuel of Cellulosic Biomass Oil (목본계 바이오매스오일의 에멀젼 연료화 연구)

  • Kim, Moon-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.836-847
    • /
    • 2016
  • Water soluble oil was obtained by pyrolysis of biomass. The characteristics of emulsified fuel by mixing water soluble oil and MDO(marine diesel oil) and engine emissions were studied with engine dynamometer. Saw dust was used as biomass. Water soluble oil was obtained by condensing of water and carbon content with pyrolysis of saw dust at $500^{\circ}C$. Emulsion fuel was obtained by emulsifying MDO and water soluble oil by the water soluble oil mixing ratio of 10 to 20% of MDO. Exhaust gas detection was performed with engine dynamometer. While combustion, micro-explosion took place in the combustion chamber by water in the emulsion fuel, emulsion fuel scattered to micro particles and it caused to smoke reduction. The heat produced from water vapour reduce the temperature of internal combustion chamber and it caused to inhibition of NOx production. It can be verified by the lower exhaust temperature of each ND-13 mode using emulsion fuel than that of MDO fuel. The NOx and smoke concentration were reduced by increasing water soluble oil content in the emulsion fuel. The power also decreased according to the increment of water soluble oil content of emulsion fuel because emulsion fuel has low calorific value due to high water content than MDO. As a result of ND-13 mode test with 20% bio oil content, it was achieved 25% reduction in NOx production, 60% reduction in smoke density, and 15% reduction in power loss.

Development of 0D Multizone Combustion Model and Its Coupling with 1D Cycle-Simulation Model for Medium-Sized Direct-Injection Diesel Engine (중형 직분식 디젤 엔진의 0-D Multi-zone 연소 모델 및 1-D Cycle Simulation 연계 기법 개발)

  • Choi, Seung-Mok;Min, Kyoung-Doug;Kim, Ki-Doo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.615-622
    • /
    • 2010
  • In this study, a 0D multizone spray-combustion model is developed for the estimation of the performance and NOx emission of medium-sized direct-injection marine diesel engine. The developed combustion model is coupled with the commercial 1D cycle-simulation model, Boost, to analyze the entire engine system, including the intake and exhaust. The combustion model code was generated using Fortran90, and the model was coupled with Boost by connecting the generated code to a user-defined high-pressure cycle (UDHPC) interface. Simulation was performed for two injectors (8 holes and 10 holes) and two engine loads (50% and 100%), and the results of simulation were in good agreement with engine performance test.

Study on Spray and Exhaust Emission Characteristics of DME-Biodiesel Blended Fuel in Compression Ignition Engine (압축착화기관에서 DME-바이오디젤 혼합연료의 분무 및 배기 특성에 관한 연구)

  • Cha, June-Pyo;Park, Su-Han;Lee, Chang-Sik;Park, Sung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.67-73
    • /
    • 2011
  • The purpose of this study is to investigate experimentally the spray-atomization and combustion-emission characteristics of biodiesel-DME blended fuel. In this study, two types of test fuels pure biodiesel (BD100) and blended fuel (B-DME20) were used, and the spray and combustion characteristics of different fuel compositions were analyzed. DME constitutes 20% and biodiesel constitutes 80% (by mass fraction) of the blended fuel. The overall spray characteristics, spray tip penetration, and cone angle were evaluated using frozen spray images. In addition, the combustion and emission characteristics were analyzed on the basis of the evaluated data for a single-cylinder CI engine with common-rail injection system. It was revealed that the injection profiles of both the test fuels for a given injection pressure showed similar trends. However, the injection profiles of the blended fuel (B-DME20) indicated shorter ignition delay than those of biodiesel.