• Title/Summary/Keyword: 연소 가시화

Search Result 185, Processing Time 0.028 seconds

A Study on the Flow Conditions of the Combustion Air Heater Outlet for the Supersonic Combustion Experiment (초음속 연소 실험을 위한 연소식 공기 가열기 출구 유동 조건 실험 연구)

  • Lee, Eun Sung;Han, Hyung-Seok;Lee, Jae Hyuk;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.88-97
    • /
    • 2022
  • In this study, a vitiated air heater was designed and manufactured to supply high-temperature and high-pressure air to the ground test apparatus of a direct-connected supersonic combustor, and an experiment was performed to verify the target design point. By installing wedges at the upper boundary, lower boundary and center of the nozzle exit of the vitiated air heater, it was confirmed that the Mach number satisfies the 2.0 level, and the pressure of the combustion chamber was also satisfactory compared to the design point. In the case of temperature, the measured temperature deviation was large due to the degree of exposure of the thermocouple and the slow response characteristics. After that, the isolator was connected to the rear of the vitiated air heater, and the Mach number was measured in the same method, and the Mach number at the center of the isolator eixt was slightly reduced to 1.8~1.9.

A Schlieren-photographic Visualization of the Methane/Air Premixed Flame Propagating inside a Rectangular Tube Locally-perturbed by an Ultrasonic Standing Wave (국소적 정상초음파장에 의해 교란되어 사각튜브형 연소실 내에서 전파하는 메탄/공기 예혼합화염의 슐리렌기법에 의한 가시화)

  • Kim, Min Sung;Kim, Jeong Soo;Hwang, Yeong Yeun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.43-49
    • /
    • 2014
  • This experimental study has been conducted to scrutinize the effects of an ultrasonic standing wave (USW) on the propagating velocity and structure of methane/air premixed flame. Propagating flame was caught by high-speed Schlieren photography, and the variation of flame-behavior was analyzed in detail. It is revealed that horizontal splitting in burnt zone is resulted by the USW, and the flame propagation velocity is augmented due to the strengthened chemical reaction. Evolutionary feature of the flame perturbed by USW, maintaining a pseudo-symmetry of top and bottom flame-front about the propagation axis tends to be free from buoyancy effect.

Effect of pre-post injection timing of diesel fuel for naval vessel on the combustion and emission characteristics in an optically-accessible single cylinder diesel engine (단기통 디젤엔진에서 함정용 디젤유의 전·후 분사시기가 연소 및 배출가스 특성에 미치는 영향)

  • Lee, Hyungmin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.868-876
    • /
    • 2014
  • The objective of this study is focused on the analyzing combustion, carbon monoxide and hydrocarbon emission characteristics of marine diesel oil, utilized for naval propulsion engine, with varying pre-post injection timing of an optically accessible single cylinder engine. And also the combustion process is analyzed by means of a high speed camera visualization. On the result of retarding pre-injection timing toward main injection timing, the mean effective pressure and maximum pressure of combustion chamber are increased; however, the heat release rate is decreased. Furthermore, the emission rates of carbon monoxide and hydrocarbon are reduced in this case. In hence, when a post-injection timing is advanced, the mean effective pressure and maximum pressure are increased, because the combustion has been performed under the high temperature and high pressurized environment during main injection time, and the emission rates of carbon monoxide and hydrocarbon are increased. From the experimental results, it considered that retarding of pre-injection timing affects to shorten the ignition delay of main injection clearly, and to raise the flame intensity comparing to the advanced state. The ignition delay during post-injection is not appeared at any post-injection time, but the flame intensity has been weakened gradually according to the retarding of post-injection timing.

Fluidic Characteristics of Precessing Jet Nozzle Combustor (세차제트노즐 연소기의 유동특성)

  • Lee, Hye-Young;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • Many processing companies are facing environmental regulations such as decreasing NOx emissions when they by to increase thermal efficiencies of combustor. We study a potential new method that may achieve both increase of thermal efficiency and decrease of NOx emissions. This new concept of burner, the precessing jet burner, is known to significantly reduce pollutants such as NOx emissions and simultaneously increase radial heat transfer. This precessing jet nozzle may increase the combustion efficiency of gas turbine engine. A basic research on characteristics of precessing jet nozzle has been conducted using FLUENT and laser visualization technique. Velocities at He nozzle cross-section are compared with the published experimental results. Precessing jet nozzle with centerbody results in better precessing phenomena.

Effect of the Configuration of Plasma Jet Plug on Combustion Characteristics in a Constant Volume Vessel (플라즈마 제트 플러그의 형상이 정적연소기내 연소특성에 미치는 영향)

  • Kim, Munheon;Yoo, Hoseon;Oh, Byungjin;Park, Jungseo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.593-602
    • /
    • 1999
  • This paper presents combustion characteristics of LPG-air mixture ignited by the plasma jet in a cylindrical vessel with constant volume, in which our focus is placed on the multi-hole plug configuration. Four types of the plug configuration depending on the number of orifice and the arranged angle are considered, along with two cases of conventional spark ignition for comparison. Not only the flame propagation is photographed at intervals, but the pressure in the combustion chamber is also recorded through the entire combustion process. The results show that the plasma jet ignition enhances the overall combustion rate remarkably in comparison to the spark ignition by generating irregular flame front and penetrating through the unburned mixture. The combustion enhancement rate agrees favorably with the available data, which supports the validity of our experiment. Synthetically estimating, the two-hole sixty-degree plug appears to be the most desirable, in that the maximum pressure as well as the combustion duration is less affected by the sub-energy level than the others. It is also deduced that there may exist an optimal plug configuration capable of rapid combustion for a specific combustion chamber.

The Effects of Injector and Swirler on the Flame Stability in a Model Combustor (모델연소기에서의 화염 안정화에 대한 분사기와 선회기의 영향)

  • Park, Seung-Hun;Lee, Dong-Hun;Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.13-27
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air and the combustion stability leading the reduction of pollutant emissions and the increase of combustion efficiency in gas turbine combustor. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-Pt13%Rh, R-type thermocouple which was 0.2mm thick. Spray and flame was visualized by ICCD(Intensified Charge Coupled Device) camera. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the geometries of injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF

Design and Implementation of Cold-Flow and Hot-Fire Test Stand of a Cryogenic Propellant Injector Used in LRE (초저온 추진제를 사용하는 액체로켓용 인젝터의 수류/연소시험장치 설계 및 제작)

  • Kim, Do-Hun;Park, Young-Il;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.61-65
    • /
    • 2010
  • To research and develop a liquid rocket engine injector, it needs empirical studies about the hydrodynamic and spray characteristics such as pressure drop, mixing and atomization. In this study, the design and implementation of lab-scale cold-flow/hot fire test stand which can supply cryogenic propellant and be controlled by time-critical LabVIEW cyclogram logic has been done. In order to visualize the spray of a liquid-centered swirl coaxial injector in cryogenic condition, LN2-GN2 cold-flow test has been done, and combustor assembly and thrust bed for LOX-$GCH_4$ hot-fire test have been fabricated.

  • PDF

A Structural Behavior of the Propane/Air Premixed Flame Interacting with an Ultrasonic Standing-wave (정상초음파가 개재하는 프로판/공기 예혼합화염의 구조 거동)

  • Lee, Sang-Shin;Seo, Hang-Seok;Kim, Jeong-Soo;Lee, Do-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.294-299
    • /
    • 2012
  • An investigation into the influence of ultrasonic standing wave on the structural behavior of propane/air premixed flame has been made to get a clue to the combustion reaction acceleration and combustion instability, as well. Visualization technique utilizing the Schlieren method was employed for the observation of structural variation of the premixed flame. The flame shape and propagation velocity were measured according to the variation of equivalence ratio. It was found that the standing wave distorted the flame front and expedited a transition to the flame with turbulent nature.

  • PDF

Effects of Ultrasonic Standing Wave on the Ultrasonically-atomized Aerosol Flame Injected through a Slit-jet Nozzle (Slit-jet 노즐을 통과한 초음파 무화 에어로졸 화염에 정상초음파가 미치는 영향)

  • Ahn, Hyun Jong;Kang, Yun Hyeong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.53-60
    • /
    • 2020
  • In liquid-fuel spray combustion, an experimental study was conducted to observe the effect of ultrasonic excitation on the ultrasonically-atomized liquid fuel flame by controlling pressure field through an ultrasonic standing wave. Flame of the ultrasonically-atomized kerosene aerosol was visualized by using a high speed camera, DSLR, and Schlieren photography. The amount of fuel consumed was obtained by a precise flow-rate measurement technique during combustion, through which the ratio of carrier gas (air) to fuel mass was able to be obtained, too. As a result, it could be found that the combustion reaction-rate of the liquid-fuel aerosol was increased by applying an ultrasonic standing wave to the secondary flame zone of the flame.

Visualization of Internal Flows in the Wall-injected Test Model of a SRM (고체로켓모터 표면분사 시험모델의 유동 가시화)

  • Kim, Do-Hun;Lee, In-Chul;Koo, Ja-Ye;Cho, Yong-Ho;Kang, Moon-Jung;Kim, Yoon-Gon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.31-39
    • /
    • 2011
  • The flowfield in a solid rocket motor was simulated at the wall-injection test model, which has a fin-slot grain and submerged nozzle, and visualized by a smoke-wire. The high speed CCD camera captured the visualized images around the nozzle inlet through the grain center port. The vortical tube structure and circumferential flow patterns at the nozzle throat were visualized. The radial momentum transfer caused by the shear-interactions of slot-outlet flow, fin-base flow and grain port flow from upstream worked as the source of these phenomena.