• Title/Summary/Keyword: 연소촉매

Search Result 342, Processing Time 0.025 seconds

가연성 액체에 의한 바닥재 소훼흔 연구

  • Lee, Sang-Jun;Hwang, Tae-Yeon;An, Seong-Il;Park, Han-Seok
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.6 no.1
    • /
    • pp.42-48
    • /
    • 2005
  • 연소의 특성으로 대부분의 화재현장에서 상단 부위에 존재하는 가연물은 대류현상 등에 의해 소실되어 연소 후 나타나는 흔적을 식별하기 곤란하며, 바닥 부분의 바닥재 등의 경우는 화재발생 이후 상승 연소하는 화염에 의해 소훼된 가연물 등이 소락하여 질식소화되므로 비교적 초기의 연소패턴을 유지하고 있는 점을 착안하여, 바닥에서 나타나는 흔적 등을 비교 검토하여 연소의 촉매제로 사용된 물질의 종류를 추론함으로써 초기에 진행되는 수사에 많은 도움을 줄 수 있다.

  • PDF

Characteristics of the Pressure Instability in a Hydrazine Thruster with Various Length-to-Diameter Ratio of Catalyst-bed (하이드라진 추력기의 촉매대 길이직경비에 따른 압력 불안정 특성)

  • Jung, Hun;Kim, Jong Hyun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.19-26
    • /
    • 2014
  • A ground hot-firing test (HFT) was carried out to make a close examination into the pressure instability for the 70 N-class hydrazine thruster under development. Monopropellant grade hydrazine was adopted as a propellant for the HFT, and catalyst-bed was filled with $Ir/Al_2O_3$ catalyst. In order to investigate the effects of thrust-chamber diameter on combustion stability, evaluation tests for the development models were performed on three kinds of lower thrust chambers having the length-to-diameter ratio (L/D) of 1.03, 1.13, and 1.26. As results, it was found that low frequency instability (~ 50 Hz) was inherent in the models, and in addition, increase of the L/D and decrease of the operating pressure led to an amplification of pressure oscillation in the test condition specified.

Catalytic Carbonization of Biomass and Nonisothermal Combustion Reactivity of Torrefied Biomass (바이오매스 촉매 탄화 및 반탄화 바이오매스의 비등온 연소 반응 특성)

  • Bak, Young-Cheol;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.725-731
    • /
    • 2018
  • The effects of catalysts addition on the carbonization reaction of biomass have been studied in a thermogravimetric analyzer (TGA). The sample biomasses were Bamboo and Pine. The catalysts tested were K, Zn metal compounds. The carbonization reactions were tested in the nonisothermal condition from the room temperature to $850^{\circ}C$ at a heating rate $1{\sim}10^{\circ}C/min$ on the flowing of $N_2$ purge gases. Also, the effects of catalyst on the torrefaction were tested in the temperature condition of 220, 250, $280^{\circ}C$ at 30 min. Combustion characteristic for the torrefied catalyst biomass were studied in the nonisothermal conditions of $200{\sim}850^{\circ}C$. As the results, the initial decomposition temperatures of the volatile matters ($T_i$) and the temperature of maximum reaction rate ($T_{max}$) were decreased with increasing the catalyst amounts in the sample biomass. The char amounts remained after carbonization at $400^{\circ}C$ increased with the catalyst amounts. Therefore catalysts addition can be decreased the energy for carbonization process and improved the heating value of product char. The catalysts reduced the optimum torrefaction conditions from $250^{\circ}C$ to $220^{\circ}C$. The torrefied catalyst biomass have lower activated energy from 46.5~58.7 kJ/mol to 25.1~27.0 kJ/mol in the nonisothermal combustion reaction.

Acid Treatment Effect of Waste Automotive Catalyst on Catalytic Combustion of Acetaldehyde (아세트알데히드 촉매 연소에 대한 자동차 폐촉매의 산처리효과)

  • 서성규;문정선
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.231-232
    • /
    • 2000
  • 자동차 보급의 증가에 의한 심각한 대기오염으로 인하여 국내 제작차(휘발유 자동차)의 경우 1987년부터 자동차 배기가스 정화용 촉매 전환기의 장착을 의무화하였다(환경부, 1998). 자동차용 촉매로 많이 사용되는 귀금속은 백금(Pt), 팔라듐(Pd), 로듐(Rh)이며, 수요비율은 백금이 전체 수요의 39%, 팔라듐이 16%, 로듐이 96%로 자동차용으로 많은 귀금속이 사용되고 있음을 알 수 있다. (중략)

  • PDF

Characteristics of Metal-Phthalocyanine for Catalytic Combustion of Methanol (메탄올의 촉매연소에 대한 금속-프탈로시아닌의 특성)

  • Seo, Seong-Gyu;Yoon, Hyung-Sun;Lee, Sun-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1809-1816
    • /
    • 2000
  • The catalytic combustion of methanol as a model volatile organic compound(VOC) was been investigated over metal-phthalocyanine(PC) in a fixed bed flow reactor system. The catalytic activity of Co-PC pretreated with air and methanol mixture at $450^{\circ}C$ and 60 cc/min for 1 hr was very excellent. The order of catalytic activity on methanol combustion was summarized as follows: metal free-PC < Zn-PC < Fe-PC < Cu($\alpha$)-PC < Co-PC. By TG/DTA analysis, the tendency of thermal decomposition was increased as follows: metal free-PC < Zn-PC < Cu($\alpha$)-PC < Co-PC < Fe-PC. Under this pretreatment condition, the basic structures of Co-PC, Cu($\alpha$)-PC and Fe-PC were destroyed, and the new metal oxide such as $Co_3O_4$ from Co-PC was confirmed by EA and XRD analysis. But Zn-PC and metal free-PC were retained its basic structure under this pretreatment condition. On the combustion of methanol over Co-PC, HCHO and $HCOOCH_3$ were observed as an intermediate products in the high concentration of reactant or the short contact time(W/F).

  • PDF

The Study of Toluene Combustion over Palladium-copper/USY Zeolite Catalyst (Pd-Cu/USY 제올라이트상에서 톨루엔 연소반응 연구)

  • Lee, Hye Young;Jin, Taihuan;Hwang, Young Kyu;Chang, Jong-San;Hwang, Jin-Soo;Lee, Chang-Gook;Baek, Shin;Ra, Do-Young
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.404-409
    • /
    • 2006
  • The catalytic combustion of toluene over Pd-Cu/USY zeolite has been examined by using FT-IR spectroscopy in a closed system under dry and humid conditions. The catalytic combustion of toluene (700 ppmv) in the temperature range of $80-220^{\circ}C$ has been investigated by using a fixed bed reactor. The Pd-Cu/USY catalyst showed the highest catalytic performance with respects to the PdO-CuO/USY and Pd/USY. Comparing to $PdO/Al_2O_3$ catalysts, the slight improvement in conversion was observed over PdO/USY catalysts under humid condition since USY zeolite is hydrophobic substrate and water give an additional oxygen source to zeolite surface like oxygen. The reduced catalysts showed more enhanced catalytic activity due to the reduced activation energy of combustion of toluene than oxidized catalysts such as PdO/USY and PdO-CuO/USY.

Development of a Enamel Coating Machine Typed VOC Incineration and Flue Gas Recirculation (VOC 소각 및 연소가스 재 순환 에나멜 도장장치 개발)

  • 정남조;유인수;유상필;송광섭
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.579-587
    • /
    • 2003
  • A lot of VOCs that is noxious ate exhausted at drying process of enamel coating device. This VOC gas can be incinerated perfectly through catalytic combustion, and heat that is occurred in incineration process ran be again used in drying process. By using VU catalytic combustion technology, in this study, we developed a enamel coating machine that have an excellent environment improvement and energy saying effect. As basic research for this development characteristics ana performance of catalytic combustion for VOC gas was evaluated and numerical analysis for drying oven was calculated. According to the result, VOCs combustion characteristics of metal form catalysis was excellent in high temperature, and it was seen that enamel coating machine should be designed as a precious controllable structure of recirculating supply rate and suction rate.

  • PDF

Novel Ramjet Propulsion System with H2O2-Kerosene Rocket as an Initial Accelerator (H2O2-케로신 로켓을 초기 가속장치로 갖는 새로운 램젯 추진기관)

  • Park, Geun-Hong;Lim, Ha-Young;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.491-496
    • /
    • 2008
  • New concept ramjet propulsion system with liquid bipropellant rocket using "Green Propellant" hydrogen peroxide for launch stage is proposed. In this novel concept, hydrogen peroxide gas generator produces hot oxygen at launch stage and kerosene injects to this jet in combustor. For basic study of this new concept ramjet system, investigation of auto-ignition characteristics and combustion of decomposed hydrogen peroxide and kerosene was conducted. In various test cases, auto-ignition and stable combustion was verified. The combustion temperature of 400°C and Fuel/Oxidizer mixture ratio of 0.6 were the limit of auto ignition. Through the experiment results, the possibility of novel concept combined propulsion system using hydrogen peroxide gas generator is ascertained.