• Title/Summary/Keyword: 연소율

Search Result 751, Processing Time 0.027 seconds

An Experimental Study on the Effect of Longitudinal Ventilation on the Variation of Burning Rate in Tunnel Fires (터널 화재시 종류식 환기가 연소율 변화에 미치는 영향에 관한 실험적 연구)

  • Yang Seung Shin;Kim Sung Chan;Ryou Hong Sun
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.55-60
    • /
    • 2005
  • In this study, the 1/20 reduced-scale experiments using Froude scaling were conducted to investigate the effect of longitudinal ventilation on the variation of burning rate in tunnel fires. The methanol square pool fires with heat release rate ranging from 3.57 kW to 10.95 kW were used. The burning rate of fuel was obtained by measured mass using load cell and temperature distribution were measured by K-type theomocouples in order to investigate smoke movement. The wind tunnel was connected with one side of the tested tunnel, and logitudinal ventilation velocity in the tested tunnel was controlled by power of the wind tunnel. In methanol fire case, the increase in ventilation velocity decreased the turning rate due to the direct cooling of fire plume. For the same dimensionless velocity(V), homing rate decreased as the size of pool fire increased.

Analysis of the Burning Rate of Solid Propellant Accounting for the Evaporation on the Surface (표면 증발을 고려한 고체추진제의 연소율 해석)

  • 이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.41-47
    • /
    • 1999
  • The burning rate of solid propellant is one of the key parameter associated with the dynamic characteristics of combustion and the combustion performances. In the AP propellants, the evaporation on the reacting surface as well as the decomposition of the propellant is of great importance in determining the overall burning rate. In this study, a theoretical analysis was conducted to obtain the expression for burning rate in the steady state combustion with the energy and species equations in the condensed phase when the radiative heat flux partially contributes to the total heat transfer to the propellant surface.

  • PDF

An Experimental Study on the Ventilation velocity of the Variation of Burning rate in Tunnel Fires - Heptane pool fire case (터널 화재시 배연속도가 연소율변화에 미치는 실험적 연구 - Heptane 풀화재 경우)

  • Ryou, Hong-Sun;Yang, Seung-Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.109-117
    • /
    • 2005
  • In this study, the 1/20 reduced-scale experiments using Froude scaling were conducted to investigate the ventilation velocity of the variation of burning rate in tunnel fires. The heptane square pool fire with heat release rate ranging from 3.71~15.6 kW were used. The burning rate of fuel was obtained by measuring mass using load cell and temperature distributions were measured by K-type theomocouples in order to investigate smoke movement. The ventilation velocity in the tested tunnel was controlled by inverter of the wind tunnel. In heptane pool fire case, the increase in ventilation velocity incresed the burning rate due to the direct supply of oxygen to the fire plume. For the same dimensionless velocity($\bar{V}$), burning rate increased as the size of pool fire decreased.

  • PDF

A Study on Combustion Characteristic of the Hybrid Combustor with Non-Combustible Diaphragm Position (비연소성 다이아프램의 설치 위치에 따른 하이브리드 연소기의 연소 특성 연구)

  • Kim, Hak-Chul;Moon, Keun-Hwan;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.163-166
    • /
    • 2012
  • The hybrid combustion were performed with the different diaphragm position for the experimental studies on characteristic of regression rate and combustion efficiency. The diaphragm was installed in 25% and 50% of fuel length from the front of solid fuel, respectively. As results of experiments, the position of diaphragm has small effect on the regression rate and combustion efficiency. It is considered that the diaphragm has local effect near the diaphragm.

  • PDF

Cyclone 연소기의 연소특성

  • 현주수;최상일;박주식;김성완;하경용
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.85-90
    • /
    • 1996
  • 석탄 직접연소의 신기술인 Cyclone 연소기술은 환경오염저감 기술증의 하나로서, 고온 연소로 인해 회분이 연소실 내부에서 용융, 제거된 후 고온의 청정연소가스만 보일러로 유입된다. 또한 연소기의 fuel-rich 연소조건하에서 생성된 고온의 불완전연소가스는 보일러 입구에서 충분한 재연소공기를 공급함으로서 완전연소시킬 수 있으므로 적은 시설투자 비용으로 기존 오일이나 가스용 보일러를 석탄용으로 전환이 용이할 뿐만 아니라 이러한 다단 연소방식을 채택하여 NOx 제어도 가능하다는 이점이 있다. Cyclone 연소기술의 개발은 석탄의 청정연소 뿐만 아니라 그 기술을 토대로 석탄가스화, MHD 발전, 가연성 폐기물 소각등에도 활용할 수 있다. 따라서 국내 기술자립을 위해 실험용 Cyclone 연소기를 설계, 제작 및 연소실험을 수행한 결과, Peco-semi탄을 연료로 공급량 약 30 kg/hr, 공기비 약 1.0 일 때 탄소전환율은 약 95% 이며 회분제거율은 약 70%임을 확인할 수 있었다.

  • PDF

The Increase in Regression Rate due to Helical Grain in Solid Fuel of Hybrid Rocket (나선형 홈에 의한 하이브리드 로켓 고체연료의 연소율 증가 특성)

  • Hwang, Yeong-Chun;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.59-66
    • /
    • 2006
  • To understand the role of helical geometry on the regression rate enhancement, two competing underlying mechanisms such as turbulence enhancement and swirling motion production were studied by numerical calculations. Experimental results showed that the enhancement of heat transfer rate has the very close relation to the increase in regression rate even though the percentage of increase in heat transfer rate is different from that in regression rate. This discrepancy is presumably due to the change of turbulent flow feature caused by so-called "blowing mass flux" from the fuel surface. In this regard, the results of RANS calculation show that the blowing velocity is responsible for the reduction of the swirl generation and the increase in the turbulent kinetic energy. And the dominancy of one of the mechanisms causes the increase in the regression rate. Meanwhile, the increase in turbulent kinetic energy due to the mixing of blowing flow and free stream flow does not contribute for the enhancement of the heat transfer rate to the surface because the blowing flow pushes boundary layer away from the solid surface.

Effect of Oxidizing Agents on the Burning Characteristics of Smoke Rod of Pesticides Using Rice Chaff as a Combustible Carrier (왕겨를 가연성 담체로 하는 봉상 농약 훈연제의 연소성에 미치는 산화제의 영향)

  • Lim, He-Kyoung;Kim, Yong-Whan;Cho, Kwang-Yun;Yu, Ju-Hyun
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.332-338
    • /
    • 2004
  • An investigation in search of the best oxidizing agent for smoke generators using rice chaff as a combustible carrier was carried out. Smoke rods formulated with active ingredients (AIs) such as inorganic oxidizing agents, glue, and powdered rice chaff, showed constant and high burning rate and high smoking rate on 11 kinds of pesticides. Sodium chlorate was the most suitable oxidizing agent for smoke rod. Even though the sodium chlorate content of the formulation showing the highest smoking rate of AI was variable to pesticides, the smoking rate appeared to increase as the burning rate increased. Active ingredients in smoke generator using rice chaff as a combustible carrier were stable for 60 days when stored at $50^{\circ}C$. An apparatus designed for smoke trapping was useful to collect smoked active ingredients.

Effect of Igniter's Burning Rate on Negative Differential Pressure of Interior Ballistics (점화제 연소율이 강내탄도의 NDP에 미치는 영향)

  • Sung, Hyung-Gun;Jang, Jin-Sung;Yoo, Seung-Young;Oh, Seok-Hwan;Choi, Dong-Whan;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.520-526
    • /
    • 2012
  • The appearance of the negative differential pressure(NDP), in which the shot base pressure is higher than the breech pressure, indicates that a potential damage on the gun system is increased. In order to safeguard the gun system, the igniter must be designed to minimize the NDP during the firing process. From this reason, the effect of igniter's burning rate on the NDP of the interior ballistics has been investigated through the numerical simulations. The NDP has been increased with increment of the coefficient in the burning rate of the igniter. A sudden change of the chamber pressure has been shown in case of using a singular coefficient.

  • PDF

Enhancement of hybrid rocket regression rate by swirl flow and helical grain configuration (선회류와 나선형 그레인 형상을 이용한 하이브리드 로켓의 연소율 향상)

  • Hwang Young-Chun;Lee Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.318-322
    • /
    • 2005
  • In this study the regression rate of hybrid rocket fuel has been investigated by swirl injectors and helical grains. Tests have been done with two kinds of injector and helical grain. In this paper the swirl injector and helical grain were varied to find the optimal condition to obtain the max regression rate for a given operational condition.

  • PDF

Strain Characteristics of a 75 tonf-class Engine for Ground Firing Test (75톤급 엔진 지상 연소 시험 변형율 특성)

  • Yoo, Jaehan;Kim, Jinhyuk;Jeon, Seongmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.126-133
    • /
    • 2018
  • A liquid rocket engine experiences various static loads in flight, such as high pressures due to propellents, thrust and thermal loads due to cryogenic liquid oxygen and combustion gas with extreme vibration. During the engine development stage, structural analyses and investigation on the strain measured from ground firing tests are necessary for determining the structural reliability of the engine. In this study, the strain characteristics, obtained from the ground firing tests of a 75 tonf-class engine, were analyzed.