• Title/Summary/Keyword: 연소불안정(combustion instability)

Search Result 268, Processing Time 0.024 seconds

Experimental Investigation on Flame Structure and Emission Characteristics in a Lean Premixed Model Gas Turbine Combustor (희박 예혼합 모형 가스터빈 연소기의 화염구조와 배기특성에 관한 실험적 연구)

  • Lee, Jong-Ho;Kim, Dae-Hyun;Jeon, Hung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.425-432
    • /
    • 2004
  • The objective of this study is a qualitative comparison between line-integrated OH chemiluminescence(OH$\^$*/) image and its Abel inverted image to investigate the flame structure at different phase of the oscillating pressure field. PIV(Particle Image Velocimetry) measurements were conducted under non-reacting conditions to see the global flow structure and NOx emission was measured to investigate the effect of fuel-air premixing on combustion instability and emission characteristics. Experiments were carried out in an atmospheric pressure, laboratory-scale dump combustor operating on natural gas. Combustion instabilities in present study exhibited a longitudinal mode with a dominant frequency of ∼341.8㎐, which corresponded to a quarter wave mode of combustor. Heat release and pressure waves were in-phase when instability occurred. Results gave an insight about the location where the strong coherence of pressure and heat release existed. Also an additional information on active control to suppress the combustion instabilities was obtained. For lean premixed combustion, strong correlation between OH$\^$*/ and NOx emissions was expected largely due to the exponential dependence of thermal NOx mechanism on flame temperature.

A Development of A Gas Mechanical Pulsator (압력 섭동 장치 설계/제작 및 검증시험)

  • Kim, Tae-Woan;Hwang, Oh-Sik;Ko, Young-Sung;Jung, Se-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.50-57
    • /
    • 2009
  • A gas mechanical pulsator is developed for the study of combustion instabilities in various combustors such as LRE combustor. First, it shows that the mass flow rates and the perturbation frequencies can be successively controlled by the inlet pressure and the rotating speed of a rotating disk with many holes. Second, the device is used as an acoustic amplification source as a substitute for the speaker in the previous acoustic tests and its results show almost the same resonant frequency and damping characteristics compared with the previous results. In conclusion, the result shows that it can be used as a substitute for a speaker in the studies of LRE combustion instabilities, which has a flow and no limitation of amplification, and a device for making a perturbation source in gas flow.

Vortex sheddings and Pressure Oscillations in Hybrid Rocket Combustion (하이브리드로켓 연소실의 와류발생과 연소압력 진동)

  • Park, Kyungsoo;Shin, Kyung-Hoon;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.40-47
    • /
    • 2013
  • The similarity in internal flow of solid and hybrid rocket suggests that hybrid rocket combustion can be susceptible to instability due to vortex sheddings and their interaction. This study focuses on the evolution of interaction of vortex generated in pre-chamber with other types of vortex in the combustor and the change of combustion characteristics. Baseline and other results tested with disks show that there are five different frequency bands appeared in spectral domain. These include a frequency with thermal lag of solid fuel, vortex shedding due to obstacles such as forward, backward facing step and wall vortices near surface. The comparison of frequency behavior in the cases with disk 1 and 3 reveals that vortex shedding generated in pre-chamber can interact with other types of vortex shedding at a certain condition. The frequency of Helmholtz mode is one of candidates resulting to a resonance when it was excited by other types of oscillation even if this mode was not discernable in baseline test. This selective mechanism of resonance may explain the reason why non-linear combustion instability occurs in hybrid rocket combustion.

Simulating Combustion Tests for the Verification of Baffle Gap of Optimal Damping Characteristics in Liquid Rocket Combustors (로켓연소기에서 최적의 감쇠특성을 보이는 분사기형 배플의 간극 검증을 위한 상압모사연소시험)

  • Kim, Hong-Jip;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.179-185
    • /
    • 2008
  • Simulating combustion tests have been performed to elucidate the effect of baffle gaps on the optimal damping characteristics in liquid rocket combustors where coaxial injectors are installed. Amplitude of pressure oscillation in model combustion chamber and the combustion stability margin are used to quantify the damping capacitance of baffles. Satisfactory agreement has been achieved with the results of cold acoustic tests. Present results have shown that the optimal gap for high acoustic damping capacity has also the large combustion stability margin in simulating combustion tests. Therefore, the present results can be utilized to determine the baffle length and optimal gap in full-scaled rocket combustors.

Modeling for Thermoacoustic Instability and Beating Pressure Amplification in Hybrid Rocket Combustion (하이브리드 로켓의 열음향 불안정과 연소압력 맥놀이 발생 모델링)

  • Hyun, Wonjeong;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.783-789
    • /
    • 2022
  • In a recent study, it was observed that the combustion gas entering the post chamber of a hybrid rocket contains vortices with very small size and high frequency characteristics. In addition, it was observed that small vortices collided with the nozzle wall to create a counter-flow, resulting in additional combustion with ignition delay. This study investigated the physical relationship between ignition delay induced by the counter-flow and the formation of beating pressure. To do this, a newly modified model was proposed by including ignition delay in the existing energy kicked oscillator model proposed by Culick. Numerical results show that the ignition delay is an important factor in determining the occurrence of the combustion pressure beats through the periodic formation of thermoacoustic coupling. In addition, when the ignition delay was reduced by increasing the post chamber length, the phase difference between the energy kick and the pressure generation was increased, the periodic pressure beats did not occur at all.

Combustion instability during engine start at the propulsion test facility for KSR-III rocket (KSR-III Rocket 종합 시험 설비에서 발생한 초기 연소 불안정에 관한 연구)

  • Cho S.;Kang S.;Ha S.;Cho I.;Oh S.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.267-270
    • /
    • 2002
  • Combustion instability, which is one of the most undesirable phenomena in the development of liquid Propellant rocket engine, can cause serious damage to the rocket itself, and must be evaded by all means. Unfortunately, KSR-III rocket went through the combustion instability during engine start at the propulsion test article No.2. To resolve the problem, time sequence has been changed, and the baffle system has been applied. In consequence of the change, stable combustion was achieved.

  • PDF

Study on Combustion Stability of Sub-scale Gas Generator (축소형 가스발생기 연소안정성 연구)

  • Ahn, Kyu-Bok;Kang, Dong-Hyuk;Kim, Mun-Ki;Lim, Byoung-Jik;Kim, Jong-Gyu;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.594-596
    • /
    • 2010
  • Hot-firing tests were performed on a sub-scale gas generator for development of a 75 ton-class liquid rocket engine. This paper deals with the analysis results of low-frequency combustion instability that encountered during combustion tests of the gas generator.

  • PDF

Development of a Software System for Measurements of Combustion Dynamics of a Dry Low NOx Gas Turbine (건식 저 NOx 가스터빈의 연소동압 측정용 소프트웨어 시스템 개발)

  • Jang, Wook;Seo, Seok-Bin;Jung, Jae-Hwa;An, Dal-Hong;Kim, Jong-Jin;Cha, Dong-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.931-938
    • /
    • 2002
  • Combustion dynamics of a dry low NOx gas turbine have been measured by utilizing a dynamic pressure measurement system. The software part of the measurement system, implemented with a commercial general-purpose DASYLab version 5.6 code, basically acquires combustion dynamics signals, performs the FFT analysis, and displays the results. The gas turbine often experiences momentary combustion instability, especially when its combustion mode changes. It is found that the measurement system developed in the study may outperform the other commercial dynamic pressure measurement system. The developed system currently serves to monitor the combustion dynamics of the gas turbine.

Verification and Analysis of Characteristics of Mechanical Pulsation for Combustion Stability Study in a Model Chamber (모형 연소기의 연소 불안정성 연구용 섭동 장치의 기능 검증 및 분석)

  • Min, Yong-Ho;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.28-30
    • /
    • 2012
  • A mechanical pulsator is manufactured for study of combustion instabilities in a model chamber with impinging-jet injectors. Artificial disturbance is generated by the device and thereby, artificial instability can be examined experimentally. A sample F(fuel)-O(dxidizer)-O-F impinging-jet injector is adopted for the test. The model chamber was designed based on the methodologies proposed in the previous work regarding geometrical dimensions and operating conditions. Pressure fluctuation data, which is obtained from the dynamic pressure transducers installed in combustion chamber, is analyzed.

  • PDF

Effects of a Simplified Mixture Nozzle Geometry on the Acoustic Field in an Aero Gas Turbine Combustor (항공용 가스터빈 연소기에서의 혼합기 노즐 형상의 단순화가 음향장 해석 결과에 미치는 영향)

  • Pyo, Yeongmin;Hong, Sumin;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.24 no.2
    • /
    • pp.58-65
    • /
    • 2019
  • A 3D FEM (Finite Element Method) based Helmholtz solver has been commonly used to characterize fundamental acoustic behavior and investigate dynamic instability features in many combustion systems. In this approach, a geometrical simplification of the target system has been generally made in order to reduce computational time and cost because a real combustor and fuel nozzle have a very complicated flow passage. The feasibility of these simplifications is quantitatively investigated in a small aero gas turbine nozzle in term of acoustic characteristics. It is found that the simplification in a nozzle geometry during the 3D FEM analysis process has no great influence on the acoustic modeling results, while the calculation complexity can be improved for a similar modeling accuracy.