• Title/Summary/Keyword: 연소배기특성

Search Result 402, Processing Time 0.028 seconds

A Study of the Combustion Flow Characteristics of a Exhaust Gas Recirculation Burner with Both Outlets Opening (양쪽 출구가 트인 배기가스 재순환 버너의 연소 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.696-701
    • /
    • 2018
  • The nitrogen oxides generated during combustion reactions have a great influence on the generation of acid rain and fine dust. As an NOx reduction method, exhaust gas recirculation combustion using Coanda nozzles capable of recirculating a large amount of exhaust gas with a small amount of air has recently been utilized. In this study, for the burner outlet with dual end opening, the use of a recirculation burner was investigated for the distribution of the pressure, streamline, temperature, combustion reaction rate and nitrogen oxides using computational fluid analysis. The gas mixed with the combustion air and the recirculated exhaust gas flow in the tangential direction of the circular cylinder burner, so that there is a region with low pressure in the vicinity of the fuel nozzle exit. As a result, a reverse flow is formed in the central portion of the burner near the center of the circular cylinder burner and the exhaust gas is discharged to the outside region of the circular cylinder burner. The combustion reaction occurs on the right side of the burner and the temperature and NOx distribution are relatively higher than those on the left side of the burner. It was found that the average NOx production decreased from an air flow ratio of 1.0 to 1.5. When the air flow ratio is 1.8, the NOx production increases abruptly. It is considered that the NOx production reaction increases exponentially with temperature when the air ratio is more than 1.5 and the NOx production reaction rate increases rapidly on the right-hand side of the burner.

A Study on the Exhaust Gas Recirculation in a MILD Combustion Furnace by Using the Coanda Nozzle Effect (MILD 연소로에서 Coanda 노즐 효과를 이용한 배기가스 재순환에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.967-972
    • /
    • 2013
  • A MILD (Moderate and Intense Low oxygen Dilution) combustion, which is effective in the reduction of NOx, is considerably affected by the recirculation flow rate of hot exhaust gas to the combustion furnace. The present study used the MILD combustor, which has coaxial cylindrical tube. The outside tube of the MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. A numerical analysis was accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of coanda nozzle geometrical parameters, nozzle passage gap length, nozzle passage length, nozzle angle and expansion length. The optimal configuration of coanda nozzle for the best entrainment flow rate was gap length, 0.5 mm, expansion angle, 4o and expansion length, 146 mm. The nozzle passage length was irrelevant to the exhaust gas entrainement.

A Study on Design and Combustion Characteristic of a $H_2O_2$/Kerosene Uni-Injector Rocket Engine (과산화수소/케로신 단일 인젝터 설계 및 혼합비에 따른 연소특성)

  • Kim, Bo-Yeon;Lee, Yang-Suk;Kim, Geun-Chul;Ko, Yung-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.81-84
    • /
    • 2010
  • In this study, a coaxial swirl injector using hydrogen peroxide and kerosene was designed and combustion performance tests were performed to evaluate combustion characteristic according to mixture ratio. Spray characteristic of the injector was verified by cold flow test and combustion performances according to mixture ratio were evaluated by the characteristic exhaust velocity. Test results showed that the combustion efficiency at the design condition was about 95% and the pressure fluctuation was very small.

  • PDF

A Study of Cold Flow Characteristics of a Flue Gas Recirculation Burner using Coanda Nozzles (코안다 노즐을 이용한 배기가스 재순환 버너의 냉간 유동 특성에 관한 연구)

  • Ha, Ji Soo;Park, Chan Hyuk;Shim, Sung Hun;Jung, Sang Hyun
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.152-158
    • /
    • 2016
  • Nitrogen oxide is generated by the chemical reaction of oxygen and nitrogen in higher temperature environment of combustion facilities. The NOx reduction equipment is generally used in the power plant or incineration plant and it causes enormous cost for the construction and maintenance. The flue gas recirculation method is commonly adopted for the reduction of NOx formation in the combustion facilities. In the present study, the computational fluid dynamic analysis was accomplished to elucidated the cold flow characteristics in the flue gas recirculation burner with coanda nozzles in the flue gas recirculation pipe. The inlet and outlet of flue gas recirculation pipes are directed toward the tangential direction of circular burner not toward the center of burner. The swirling flow is formed in the burner and it causes the reverse flow in the burner. The ratio of flue gas recirculation flow rate with the air flow rate was about 2.5 for the case with the coanda nozzle gap, 0.5mm and it was 1.5 for the case with the gap, 1.0mm. With the same coanda nozzle gap, the flue gas recirculation flow rate ratio had a little increase when the air flow rate changes from 1.1 to 2.2 times of ideal air flow rate.

A Study on Combustion Characteristics of a Multi Injector Rocket Engine using $H_2O_2$/Kerosene as propellants (과산화수소/케로신 다중 인젝터의 혼합비에 따른 연소 특성 연구)

  • Yu, I-Sang;Jeon, Jun-Su;kim, Jai-Ho;Kim, Wan-Chan;Ko, Yung-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.129-132
    • /
    • 2012
  • In this study, combustion performance tests of a multi coaxial-swirl injector engine using hydrogen peroxide and kerosene as propellants were performed to evaluate combustion characteristic according to mixture ratio between 6.0 and 9.0 by criterion of designed(7.6). Combustion characteristics were evaluated by calculated characteristic exhaust velocity($c^*$) and pressure fluctuation. Test results showed that the combustion efficiency was over 90% and the pressure fluctuation was within 1%.

  • PDF

A Study on Characteristics of Emissions in GDI Engine with Intake Swirl Variation (흡기스월 변화에 따른 GDI 기관의 배기특성에 관한 연구)

  • 채재우;차민혁;이상만
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.207-209
    • /
    • 2000
  • GDI(Gasoline Direct Injection) 기관은 전체적으로 희박한 영역에서 작동되기 때문에 저연비, 고출력화 및 배기유해가스 저감에 매우 유리하다. GDI 기관에 있어서 희박연소를 실현하고자 한 연구는 공기유동 강화방식, 연소실 형상의 최적화, 부실식 연소, 분사된 연료의 미립화, 흡기포트의 형상 변화, 운전조건 변화에 따른 분사전략의 변화 등 그 방식도 다양하며,$^{<1-5>}$ 최근엔 이러한 각 방식들의 장점들을 적절히 활용하고 이에 따라 각기 고유한 모델을 채택하여 접근하려는 시도를 하고 있다$^{<6>}$ . (중략)

  • PDF

Study on Spray and Exhaust Emission Characteristics of DME-Biodiesel Blended Fuel in Compression Ignition Engine (압축착화기관에서 DME-바이오디젤 혼합연료의 분무 및 배기 특성에 관한 연구)

  • Cha, June-Pyo;Park, Su-Han;Lee, Chang-Sik;Park, Sung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.67-73
    • /
    • 2011
  • The purpose of this study is to investigate experimentally the spray-atomization and combustion-emission characteristics of biodiesel-DME blended fuel. In this study, two types of test fuels pure biodiesel (BD100) and blended fuel (B-DME20) were used, and the spray and combustion characteristics of different fuel compositions were analyzed. DME constitutes 20% and biodiesel constitutes 80% (by mass fraction) of the blended fuel. The overall spray characteristics, spray tip penetration, and cone angle were evaluated using frozen spray images. In addition, the combustion and emission characteristics were analyzed on the basis of the evaluated data for a single-cylinder CI engine with common-rail injection system. It was revealed that the injection profiles of both the test fuels for a given injection pressure showed similar trends. However, the injection profiles of the blended fuel (B-DME20) indicated shorter ignition delay than those of biodiesel.