• Title/Summary/Keyword: 연소기 헤드

Search Result 63, Processing Time 0.026 seconds

Evaluation of Structural Stability for a 75-tonf Class Thrust Chamber Mixing Head (75톤급 연소기 헤드부의 구조안정성 평가)

  • Ryu, Chul-Sung;Lee, Keum-Oh;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.515-519
    • /
    • 2011
  • Structural tests for the mixing head of a 75tonf class thrust chamber were performed to verify structural stability. The mixing head of a thrust chamber is loaded by high pressure with regeneratively cooled fuel and cryogenic liquid oxygen(LOx) as well as it transfers thrust load generated by liquid rocket engine. Therefore structural stability of mixing head is a very important factor to work without any plastic deformation or structural failure. In this study, two mixing heads were manufactured using different welding methods, Tungsten Inert Gas(TIG) welding and Electron Beam Welding(EBW) and evaluated a structural stability. The results of structural tests showed that the mixing head assembled by EBW can withstand the applied design load without any structural failures and be structurally more stable than that of TIG welding.

  • PDF

Combustion Stability Rating Test under Low Pressure Condition of a 75-tonf-class LRE Thrust Chamber (75톤급 액체로켓엔진 연소기의 저압 조건에서 수행된 연소안정성 시험)

  • Lee, Kwang-Jin;Kang, Dong-Hyuk;Kim, Mun-Ki;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.92-100
    • /
    • 2010
  • Combustion stability rating tests of 75-tonf-class thrust chamber for technology demonstration were carried out at a low pressure. Two kinds of mixing heads were used in this study. One of them has injectors of 631 and the other has injectors of 721. Mixing head with injectors of 631 showed a self-oscillation instability at the chamber pressure of 30 bar. Mixing head with injectors of 721 showed that a high frequency combustion stability was maintained under the same pressure and the same mass flow rate. But mixing head with injectors of 721 generated a self-oscillation instability at the chamber pressure of 20 bar and it was found that stability boundary region was changed due to the configuration of a mixing head from these results.

Combustion Stability Rating Test under Low Pressure Condition of a 75-$ton_f$ LRE Thrust Chamber (75톤급 액체로켓엔진 연소기의 저압 조건에서 수행된 연소안정성 시험)

  • Lee, Kwang-Jin;Kang, Dong-Hyuk;Lim, Mun-Ki;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.231-238
    • /
    • 2010
  • Combustion stability rating tests under condition low pressure of a 75-$ton_f$ liquid rocket engine(LRE) thrust chamber were carried out. Mixing head with decreased number of injectors than that of the other but with the same mass flow rate to the combustion chamber showed self-oscillation instability in chamber pressure of 30 bar. The other combustion chamber with increased number of injectors showed that high frequency combustion stability was maintained under condition of same pressure, but self-oscillation instability was generated in chamber pressure of 20 bar which can be considered as stability boundary region of this mixing head.

  • PDF

Structural Design of Injector Head Part of 7ton class Thrust Chamber (7톤급 연소기 헤드부 구조설계)

  • Ryu, Chul-Sung;Lee, Keum-Oh;Heo, Seong-Chan;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.249-252
    • /
    • 2012
  • Structural design of the injector head part of a 7ton class thrust chamber was preformed. Structural stability of an injector head part is a very important factor for a thrust chamber of a liquid rocket engine because it is loaded by high pressure of liquid oxidizer and fuel in addition to thrust load. Structural design requirements were first defined to design the injector head part of the 7ton class thrust chamber and the basic configuration was designed on the basis of the design requirements. A high strength steel that has been locally developed was applied to the injector head part of the thrust chamber. A total of twelve design configurations have been analyzed to select structurally the most stable design configuration.

  • PDF

케로신/액체산소 다단연소 사이클 로켓엔진용 산화제 과잉 예연소기 기술

  • Mun, Il-Yun;Yu, Jae-Han;Ha, Seong-Eop;Mun, In-Sang;Lee, Su-Yong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.151.2-151.2
    • /
    • 2012
  • 터보펌프 구동에 사용된 가스발생기 생성가스를 연소기로 공급하여 주추력 발생에 사용하는 다단연소 사이클 로켓엔진은 고추력을 요하는 우주 발사체에 널리 사용되고 있다. 다단연소 사이클 로켓엔진에 사용되는 가스발생기를 예연소기라 부르며 케로신과 액체산소를 추진제로 하는 다단연소 사이클 로켓엔진에는 산화제 과잉 예연소기가 사용된다. 예연소기는 터보펌프 구동을 목적으로 하기 때문에 예연소기 생성가스의 횡단면 온도분포는 터빈에 의해 제한되는 온도범위 내에서 균일하여야 하며 넓은 운전영역에서 안정적인 연소가 이루어져야 한다. 산화제 과잉 예연소기는 모든 추진제가 혼합헤드를 통해 분사되는 방식과 추진제를 혼합헤드와 연소실로 나누어 공급하는 방식이 있다. 기술검증을 위해 산화제 일부와 연료를 혼합헤드를 통해 연소실에 공급하여 1차 연소시키고 나머지 산화제를 연소실 냉각채널을 거쳐 연소실 중앙의 분사공을 통해 연소실로 주입하여 기화시키는 형태로 최종적으로 연소압 20MPa, 혼합비 60에서 작동하는 산화제 과잉 예연소기를 설계하여 연소시험을 수행하였다. 혼합헤드에는 별도의 점화용 분사기 없이 전체 연료 분사기를 통해 점화용 연료인 TEA/TEB 혼합물을 분사하여 점화하였다. 추진제를 2단으로 공급할 수 있도록 고안된 가압식 연소시험 설비에서 10회, 누적 60초 이상의 연소시험이 성공적으로 수행되었다. 연소시험결과 넓은 작동영역에서 안정적 연소특성과 생성가스 온도 분포의 균일성을 확인할 수 있었다. 고온 고압의 산화제 과잉 예연소기 기술 확보를 통해 케로신/액체산소 다단연소 사이클 로켓엔진 개발을 위한 기술적 기반을 마련하였다.

  • PDF

A Mixing Head Integrated, Multi-Ignition Device for Liquid Methane Engine (액체메탄엔진용 믹싱헤드 일체형 다중점화장치)

  • Lim, Byoungjik;Lee, Junseong;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.54-65
    • /
    • 2022
  • We are developing a compact ignition device that can provide a multi-ignition capability for an upper stage methane engine of a two staged small satellite launch vehicle. Firstly, the multi-ignition device is designed and built as an integral part of an additively manufactured mixing head. Secondly, the ignition device requires no separate high-pressure vessels to store ignition propellants as they are branched out from the main feed lines for the mixing head. We performed experiments at various levels, including igniter autonomous tests, thrust chamber ignition and combustion tests on the new compact ignition device which is integrated in the thrust chamber of one-tonf class liquid oxygen/liquid methane engine, and confirmed stable ignition performance.

Study on the Combustion Characteristics of Subscale Liquid Rocket Combustion Chamber (축소형 액체로켓엔진 연소기의 연소특성에 대한 연구)

  • Kim Jong-Gyu;Lee Kwang-Jin;Song Ju-Young;Moon Il-Yoon;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.288-293
    • /
    • 2006
  • The combustion performances and characteristics of the subscale liquid rocket combustion chamber are discussed in this paper. Subscale combustion chamber is composed of mixing head, ablative cooling cylinder, and water cooling nozzle. The mixing head has eighteen coaxial swirl injectors and one center coaxial swirl injector for ignition. The mixing heads employing the injectors of low different recess length are considered in this paper. The results of the firing test, comparison of performance, and characteristics of static and dynamic pressures of the four different mixing heads are described. The characteristics of combustion at design and of design points are also discussed.

  • PDF

Manufacturing of Technology Demonstration Models of a 75-tonf LRE Thrust Chamber (75톤급 액체로켓엔진 연소기의 기술검증 시제 제작)

  • Lee, Kwang-Jin;Kim, Jong-Gyu;Lim, Byoung-Jik;Seo, Seong-Hyeon;Han, Yeoung-Min;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.608-612
    • /
    • 2009
  • Technology demonstration models(TDM) of a 75-$ton_f$ liquid rocket engine(LRE) thrust chamber were manufactured on the basis of development technologies of 30-$ton_f$ LRE. It was confirmed that some machining and welding technologies which were aimed to be verified through the manufacturing of demonstration models could be applied to the thrust chamber 75-$ton_f$-class. New designed mixing head part was manufactured by means of new process. The manufacturing process and technologies established through TDM's will improve the reliability of manufacturing process of large LRE thrust chamber.

  • PDF

Design and Fabrication of Full-Scale Regenerative Cooling Combustion Chamber (${\varepsilon}$=12) of Liquid Rocket Engine for Ground Hot Firing Tests (지상연소시험용 실물형 재생냉각 연소기(확대비 12)의 설계 및 제작)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Seo, Seong-Hyeon;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.114-118
    • /
    • 2007
  • Design and fabrication of a 30-tonf-class full-scale regenerative cooling combustion chamber of a liquid rocket engine for a ground hot firing test are described. It has chamber pressure of 60 bar and nozzle expansion ration of 12 and manufactured to have a single welded structure of· the mixing head and the chamber. The material of the mixing head is STS316L which has excellent mechanical property in cryogenic condition. The chamber comprise of the cylinder, nozzle throat, and 1st/2nd nozzle parts. The material of the inner jacket is copper alloy/STS329J1/STS316L and that of the outer jacket is STS329J1. The components of· the combustor were manufactured by mechanical processing including lathing, milling, MCT, rolling and pressing. The machined components were integrated to a single body by means of general welding, electron beam welding(EBW), and brazing.

  • PDF

Combustion Performance Tests of High Pressure Subscale Liquid Rocket Combustors (고압 축소형 연소기의 연소 성능 시험)

  • Kim, Jong-Gyu;Lee, Kwang-Jin;Seo, Seong-Hyeon;Lim, Byoung-Jik;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.128-134
    • /
    • 2007
  • Combustion performance and characteristics of high-pressure subscale liquid rocket combustors were studied experimentally. Four different models of combustor were considered in this paper. The high-pressure subscale combustor is composed of the mixing head, the water cooling cylinder and the nozzle. One model of the combustors employed regenerative cooling combustor in that the kerosene used for the chamber cooling is burned. This combustor was damaged due to a high frequency combustion instability occurred during a firing test. The results of the firing tests, comparison of performance, and characteristics of static and dynamic pressures of the combustors are described.

  • PDF