• Title/Summary/Keyword: 연소기 성능시험

Search Result 254, Processing Time 0.019 seconds

Performance Analysis and Configuration Design of the Thruster Nozzle for Ground-firing Test and Evaluation (지상연소시험평가용 추력기 노즐의 성능해석과 형상설계)

  • Kam, Ho-Dong;Kim, Jeong-Soo;Bae, Dae-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.10-16
    • /
    • 2012
  • A computational analysis of nozzle flow characteristics and plume structure is conducted to examine performance of the supersonic nozzle employed in a thruster for ground firing test. At first, flow simulations in two-dimensional converging-diverging nozzle are performed for the verification of computational capability as well as turbulence model validity. Axisymmetric converging-diverging nozzles for ground firing test are analyzed with the k-${\omega}$ SST model. A performance penalty caused by flow separation in a diverging section is observed in initially-designed nozzle. The performance could be enhanced by the modification of the diverging section of nozzle contour.

Combustion Performance Characteristics of a High Pressure Sub-scale Liquid Rocket Combustor (고압 축소형 연소기의 연소 성능 특성에 관한 연구)

  • Kim, Jong-Gyu;Lee, Kwang-Jin;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.31-36
    • /
    • 2007
  • Combustion performance characteristics of subscale high-pressure combustor were investigated at 70 bar combustion pressure. All tests were successfully performed without any damage on the combustor. The mixing characteristics and distribution pattern of the injectors were found to have considerable influence on the combustion performance. The characteristic velocity of the combustor was higher in the injector with internal mixing than that of external mixing and in the injector with smaller mass flowrate. The pressure fluctuations at the propellant manifolds and the combustion chamber were measured to be less than 3% of the mean combustion pressure to meet the combustion stability criterion and to prove stable combustion characteristics of the combustor.

Development of Low NOx Combustor for 55kw Class Micro Gasturbine (55kW급 마이크로터빈용 저공해 연소기 개발)

  • Kim Hyung-Mo;Park Young-Il;Park Poo-Min;Yang Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.318-321
    • /
    • 2005
  • The design and performance test of a low NOx gas turbine combustor to be used in 55kW class micro-gasturbine engine was performed in KARI's combustion test facility. The combustor is reverse flow-can type for easy installation of injector and other parts and LNG is used as fuel. The performance targets are $99.5\%$ combustion efficiency, less 10ppm NOx, $30\%$ patten factor and $4\%$ pressure loss. Most of the performances required are satisfied.

  • PDF

Hot Firing Tests of a Gas Generator for Liquid Rocket Engine using a Turbine Manifold Simulator (터빈 매니폴드 모사장치를 이용한 액체로켓엔진 가스발생기 연소시험)

  • Lim, Byoungjik;Kim, Munki;Kim, Jonggyu;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.22-30
    • /
    • 2015
  • A gas generator which generates turbine driving gas by burning a part of propellants is used in an open cycle liquid rocket engine and as a main component of an open cycle liquid rocket engine autonomous hot firing tests are required to investigate the combustion performance and characteristics of the gas generator. However, since the combustion gas generated by a gas generator is choked at the turbine nozzle in the turbine manifold, it is necessary to consider the internal volume of turbine manifold as well as that of the gas generator for correct investigation of the combustion performance, characteristics, and acoustic characteristics of the gas generator. Therefore, in the paper hot firing test results of a gas generator with a turbine manifold simulator are described and characteristic prediction using the autonomous test of a gas generator is explained.

Combustion Characteristics of the Slinger Combustor (슬링거 연소기의 연소특성)

  • 이강엽;이동훈;최성만;박정배;박영일;김형모;한영민
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.173-178
    • /
    • 2003
  • The study was performed to understand combustion characteristics of the slinger combustor. Liquid fuel is discharged radially outwards through injection holes drilled in the high speed rotating shaft. We observed atomizing characteristics with variation of fuel nozzle rotating speed by using PDPA system. The mean drop diameter highly depends on fuel nozzle rotating speed. In KARI combustion test facility, Ignition and combustion tests were performed by using real scale combustor. In the test results, ignition and combustion efficiency were increased according to increasing fuel nozzle rotating speed. The measured radial temperature distribution at the combustor exit shows stable and fairly good distribution.

  • PDF

A Trade-off Analysis between Combustion and Cooling Performance of a Liquid Rocket Combustor with Fuel Film Cooling Scheme (연료 막냉각을 적용한 액체로켓 연소기의 연소/냉각 성능 간 Trade-off 해석)

  • Joh, Miok;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.16-22
    • /
    • 2012
  • Performance of a liquid rocket thrust chamber with regenerative cooling scheme has been numerically analyzed using in-house CFD code which can predict combustion/cooling performance and provide nozzle design parameters. This paper investigates trade-offs between combustion and cooling performance with varying amount of fuel directly injected into the chamber wall to form cooling films and mixture ratios for the peripheral injectors. Further efforts to verify/improve the simulation methodology including comparison with the firing test results are planned to make it a reliable tool to optimize the film cooling and other major design parameters.

A Trade-off Analysis between Combustion and Cooling Performance of a Liquid Rocket Combustor with Fuel Film Cooling Scheme (연료 막냉각을 적용한 액체로켓 연소기의 연소/냉각 성능 간 trade-off 해석)

  • Joh, Mi-Ok;Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.35-41
    • /
    • 2012
  • Performance of a liquid rocket thrust chamber with regenerative cooling scheme has been numerically analyzed using in-house CFD code which can predict combustion/cooling performance and provide nozzle design parameters. This paper investigates trade-offs between combustion and cooling performance with varying amount of fuel directly injected into the chamber wall to form cooling films. Also is analyzed the effect of varying mixture ratios for the peripheral injectors on combustion performance enhancement. Further efforts to verify/improve the simulation methodology including comparison with the firing test results are planned to make it a reliable tool to optimize the film cooling and other major design parameters.

  • PDF

Hot-Fire Test and Performance Evaluation of Small Liquid-Monopropellant Thrusters under a Vacuum Environment (단일액체추진제 소형 추력기의 진공환경 연소시험 및 성능특성 평가)

  • Kim Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.84-90
    • /
    • 2004
  • A performance evaluation is made in terms of thrust, impulse bit. and specific impulses for a set of mono-propellant hydrazine thrusters producing 0.95 lbf of nominal thrust at an inlet pressure of 350 psia. With a brief description on the hot-firing test configuration and procedures. a typical data obtained from steady-state firing mode is given directly showing the variational behavior of propellant supply pressure, mass flow rate, vacuum condition, and thrust. The performance features are successfully compared to the reference criteria of 1-lbf standard mono-propellant rocket engine. Additionally. a statistical inter-thruster treatment is concisely depicted for the justification of selected thrusters as a grouped member of flight model for spacecraft propulsion system.

Development of a Ejection Gas Generator for Precluding Erosive Burning by Using Bundle Cylindrical Grains (침식연소가 방지되는 사출용 다발 원통형 그레인 가스발생기 개발)

  • Oh, Seok-Jin;Cha, Hong-Seok;Jang, Seung-Gyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.69-76
    • /
    • 2012
  • An achieving method of highly progressive pressure gradient is presented to enhance the missile ejection system's performance by using a gas generator in the condition of preventing erosive burning. To obtain and confirm a stable burning, a ground burning test was performed to evaluate the new methods of a radial-hole and a multi-row propellant grain. The test results show that a radial-hole grain takes good effect on erosive burning and not on ejection performance. On the other hand, a multi-row grain which reduces the length-to-diameter ratio(L/D) of grain is very effective to prevent the erosive burning and to enhance the ejection performance simultaneously.