• Title/Summary/Keyword: 연성 능력

Search Result 338, Processing Time 0.02 seconds

Seismic Behavior of Non-Seismic Concentrically Braced Frames with Shared Shear tab (쉬어탭 공유 접합부를 갖는 비내진중심가새골조의 내진거동)

  • Yeom, Hee Jin;Jung, Eun Bi;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.323-332
    • /
    • 2015
  • Special concentrically braced frames(SCBFs) have distinctive advantages in considerable seismic performance, which make engineers widely use SCBFs as lateral-load resisting systems in buildings and have researchers to develop SCBFs design methods. Compared to the extensive research of SCBF, comparatively little information is currently available on the performance of SCBFs designed and constructed before the early 1990's. Prior to 1988, concentrically braced frames(CBFs) design requirements were substantially less restrictive. As a result, many existing structures designed to these requirements may not ensure ductility and pose a significant concern in current buildings. In this study, these older frames are referred as non-seismic braced frames(NCBFs). In order to investigate the seismic behavior of NCBFs, finite-element(FE) models of SCBF and NCBF were suggested and verified using case investigation of NCBF conducted on the University of Washington. Using these models, the seismic behavior of NCBF with shared welding shear tab, which is the representative of the types of connections, was established and compared with the seismic performance of SCBF.

Crack Control of Flexure-Dominant Reinforced Concrete Beams Repaired with Strain-Hardening Cement Composite (SHCC) Materials (변형경화형 시멘트 복합체를 활용한 휨항복형 철근콘크리트 보의 균열제어)

  • Cha, Jun-Ho;Park, Wan-Shin;Lee, Young-Oh;Kim, Sun-Woo;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.109-120
    • /
    • 2011
  • This paper presents an experimental study results on the crack control of flexure-dominant reinforced concrete beams repaired with strain-hardening cement composite (SHCC). Five RC beams were fabricated and tested until failure. One unrepaired RC beam was a control specimen (CBN) and remaining four speciemens were repaired with SHCC materials. The test parameters included two types of SHCC matrix ductility and two types of repair method (patching and layering). Test results demonstrated that RC beams repaired with SHCC showed no concrete crushing or spalling until final failure, but numerous hair cracks were observed. The control specimen CBN failed due to crushing. It is important to note that SHCC matrix can improve crack-damage mitigation and flexural behavior of RC beams such as flexural strength, post peak ductility, and energy dissipation capacity. In the perspective of crack width, crack widths in RC beams repaired with SHCC had far smaller crack width than the control specimen CBN under the same deflection. Especially, the specimens repaired with SHCC of PVA0.75%+PE0.75% showed a high durability and ductility. The crack width indicates the residual capacity of the beam since SHCC matrix can delay residual capacity degradation of the RC beams.

Evaluation of Seismic Performance of Prefabricated Bridge Piers with a Circular Solid Section (중실원형단면 조립식 교각의 내진 성능 평가)

  • Kim, Hyun-Ho;Shim, Chang-Su;Chung, Chul-Hun;Kim, Cheol-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.23-31
    • /
    • 2007
  • Fast bridge construction has been increasingly needed according to the changed construction environment. This paper deals with quasi-static tests on precast piers for bridge substructures. One of the most crucial aspect of the design of precast prestressed concrete bridge piers is the seismic performance. Seven precast pier elements were fabricated. The amount of prestressing bars, the prestressing force, and the location and number of the joint between segments were the main test parameters. Test results showed that the introduced axial prestress made the restoration of the deformation under small lateral displacement and minor damage. However, there was no effect of the prestress when the plastic hinge region was damaged severely due to large lateral displacement. Judging from the observed damage, the design of the joints in precast piers should be done for the first joint between the foundation and the pier segment. The amount of the necessary prestressing steel may be designed to satisfy the P-M diagram according to the service loads, not by having the same steel ratio as normal RC bridge piers. In order to satisfy the current required displacement ductility, it is necessary to have the same amount of the transverse reinforcements as RC piers. As the steel ratio increases, the energy absorption capacity increases. The number of joints showed a little influence on the energy absorption capacity.

Numerical Study on Seismic Performance Evaluation of Circular Reinforced Concrete Piers Confined by Steel Plate (강판으로 보강된 원형철근콘크리트교각의 내진성능 평가에 관한 해석적 연구)

  • Lee, Myung-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.116-122
    • /
    • 2021
  • This study quantitatively evaluated the performance improvement of a circular reinforced concrete pier under dynamic load with strengthening using a steel plate. Various three-dimensional elements were applied using the finite element program ABAQUS. The analytical parameters included the ratios of the steel cover length to the pier's total height and the ratios of the steel cover thickness to the pier diameter for inelastic-nonlinear analysis. The lower part of the pier had fixed boundary conditions, and lateral repetitive loads were applied at the top of the pier. The pier was investigated to evaluate the dynamic performance based on the load-displacement curve, stress-strain curve, ductility, energy absorption capability, and energy ratio. The yield and ultimate loads of piers with steel covers increased by 3.76 times, and the energy absorption capability increased by 4 times due to the confinement effects caused by the steel plate. A plastic hinge part of the column with a steel plate improved the ductility, and the thicker the steel plate was, the greater the energy absorption capacity. This study shows that the reinforced pier should be improved in terms of the seismic performance.

Pushover Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 정적해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.325-334
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. A pushover analysis of the structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of the semi-rigid connection were adopted for the models. A fiber model was utilized for the moment-curvature relationship of the steel beam and the column, and a three-parameter power model was adopted for the moment-rotation angle of the semi-rigid connection. The top displacement, base-shear force, required ductility for the connection, sequence of the plastic hinge, and design factors such as the overstrength factor, ductility factor, and response modification coefficient were investigated using the pushover analysis of a 2D structure subjected to the equivalent static lateral force of KBC2005. The partial arrangement of the semi-rigid connection was found to have secured higher strength and lateral stiffness than that of the A-Semi frame, and greater ductility than the A-Rigid frame. The TSD connection was found suitable for use for economy and safety in the sample structure.

A Study on the Structural Performance of Slab-column Joint at Flat Plate Structure Using ECC (고인성 시멘트 복합재를 활용한 플랫플레이트 구조의 슬래브-기둥 접합부 구조성능 연구)

  • Choi, Kwang-Ho;Park, Byung-Chun;Choi, Sung-Woo;Ryu, Deug-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.209-216
    • /
    • 2017
  • One of the important considerations in structural designing the flat plate system is ensuring the resistance to punching shear caused by axial loads and the ductile ability to follow horizontal deformation under earthquake. In this study, the ECC (Engineered Cementitious Composite) has been placed in the critical section zone of punching shear at slab-column joint to improve ductility and the advanced details of shear reinforced area nearby critical section zone has been developed using stud and steel fiber. The shear performance tests were performed on the specimens with parameters of fiber type mixed with ECC, stud and steel fiber set into the shear reinforced area in which the failure pattern, joint strength, displacement and strain of the specimen were compared and analyzed. The test results showed that the strength and ductility of specimens with ECC applied to joint were better than those of RC flat plate system. Also, the shear reinforcement effect of stud and the ductility improvement of steel fiber concrete were confirmed in the shear reinforcement area.

Seismic Evaluation of Steel Moment Frame Buildings based on Different Response Modification Factors and Fundamental Periods (반응수정계수와 주기의 영향에 대한 철골모멘트저항골조 건물의 내진성능평가)

  • Shin, Ji-Wook;Lee, Ki-Hak;Lee, Do-Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.47-56
    • /
    • 2008
  • This study was performed to evaluate the effect of Response modification factors (R-factor) in 3-, 9- and 20- story steel Moment Resisting Frame (MRF) buildings. Each structure was designed using a R-factor of 8, as tabulated in the 2000 International Building Code provision (IBC 2000) and Korea Building Code (KBC) 2008. In order to evaluate the maximum and minimum performance expected for such structures, an upper bound and lower bound design were adopted for each model. Next, each analytical model was designed using different R-factors (8, 9, 10, 11, 12) and four different structural periods with the original fundamental period. For a detailed case study, a total of 150 analytical models were subjected to 20 ground motions representing a hazard level with a 2% probability of being exceeded in 50 years. In order to evaluate the performance of the structures, static push-over and non-linear time history analysis (NTHA) were performed, and displacement ductility demand was investigated to consider the ductility capacity of the structures. The results show that the dynamic behaviors for the 3- and 9-story buildings are relatively stable and conservative, while the 20-story buildings show a large displacement ductility demand due to dynamic instability factors. (e.g. P-delta effect and high mode effect)

Parametric Study on the P-M Interaction Diagram of Hollow Prestressed Concrete Bridge Columns (중공 프리스트레스트 콘크리트 교각의 P-M 상관도 매개변수 분석)

  • Kim, Tae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.1-10
    • /
    • 2011
  • This study presents the results of parametric studies of the P-M interaction diagram of hollow prestressed concrete bridge columns. Among the numerous parameters, this study concentrates on concrete compressive strength, prestressing steel reinforcement ratio, effective prestress, the Ds/Do ratio, and the Di/Do ratio. The strength and ductility of hollow prestressed concrete bridge columns were evaluated through quasistatic tests. The P-M interaction diagrams from the codes were different from that of the results, which were in good agreement with AASHTO-LRFD. Nondimensionalized P-M interaction diagrams were developed to predict the design resistance of hollow prestressed concrete bridge columns.

Seismic Performance of RC Columns Confined by Outside Lateral Reinforcement (외측 횡보강재로 구속된 철근콘크리트 기둥의 내진성능)

  • Lee, Do Hyung;Oh, Jangkyun;Yu, Wan Dong;Choi, Eunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.189-196
    • /
    • 2012
  • In this paper, reinforced concrete columns test has been conducted under repeated lateral load reversals. The test columns have been reinforced with outside lateral confinement members in addition to transverse reinforcements. For this purpose, a strainless steel and a GFRP have been employed for the lateral confinement members. Primary parameters are types, thickness and spacing of the lateral confinement members. Experimental results reveal that columns reinforced with lateral confinement members exhibit improved ductility and energy dissipation capacity in comparison with those unreinforced. It is thus concluded that the present approach can be of a useful scheme for the seismic retrofitting of reinforced concrete columns.

Ductility Capacity of Slender-Wind R/C Walls (긴 세장한 R/C 벽체의 연성능력)

  • 홍성걸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.202-212
    • /
    • 2000
  • This study investigates the ductility capacity of slender-wide reinforced concrete walls under predominant flexural moment loading. The experimental work for this study aims to provide design guidelines for bar detailing in critical regions under compressive stress in particular in case of slender-wide RC walls. According to the experimental observation the Bernoulli hypothesis of linear strain distribution is no longer valid and the ultimate compressive strain of concrete is significantly reduced, It is postulated that the nonlinear strain distribution causes the concentrated compressive stressed region and hence the premature crushing failure at the toe of walls. The reduced ultimate strain and nonlinear strain distribution need transverse reinforcement for confinement and more realistic models for the strength and displacement estimation of slender-wide RC wall.

  • PDF