• Title/Summary/Keyword: 연성해석

Search Result 1,201, Processing Time 0.045 seconds

Anaysis of Elasto-plastic Deforming of Sturcture by Hydrodynamic Force Using Fluid Structure Interaction Method (유체-고체 연성 해석 기법을 통해 유체에 의한 고체의 탄소성 거동 해석 연구)

  • Lee, Younghun;Gwak, Min-cheol;Cho, Haeseong;Joo, HyunShig;Shin, SangJoon;Yoh, Jai-ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.957-964
    • /
    • 2016
  • This paper presents numerical investigation on behaviors of the rear cover in the vertical launcher under rocket plume loading by using fluid-structure interaction analysis. The rocket plume loading is modeled by the fully Eulerian method and elasto-plastic behavior of the rear cover is predicted by the total Lagrangian method based on a 9-node planar element. The interface motion and boundary conditions are described by a hybrid particle level-set method within the ghost fluid framework. The present results will be compared with the experimental data in the future.

Vibration of Pipes Coupled with Internal and External Fluids (내부 및 외부 유체와 연성된 파이프의 진동 해석)

  • Ryue, Jung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.142-150
    • /
    • 2012
  • The waveguide finite element (WFE) method is a useful numerical technique to investigate wave propagation along waveguide structures which have uniform cross-sections along the length direction ('x' direction). In the present paper, the vibration and radiated noise of the submerged pipe with fluid is investigated numerically by coupling waveguide finite elements and wavenumber boundary elements. The pipe and internal fluid are modelled with waveguide finite elements and the external fluid with wavenumber boundary elements which are fully coupled. In order to examine this model, the point mobility, dispersion curves and radiated power are calculated and compared for several different coupling conditions between the pipe and internal/external fluids.

Coupled Analysis with Digimat for Realizing the Mechanical Behavior of Glass Fiber Reinforced Plastics (유리섬유 강화 플라스틱의 역학적 거동 구현을 위한 Digimat와의 연성해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.349-357
    • /
    • 2019
  • Finite element method (FEM) is utilized in the development of products to realistically analyze and predict the mechanical behavior of materials in various fields. However, the approach based on the numerical analysis of glass fiber reinforced plastic (GFRP) composites, for which the fiber orientation and strain rate affect the mechanical properties, has proven to be challenging. The purpose of this study is to define and evaluate the mechanical properties of glass fiber reinforced plastic composites using the numerical analysis models of Digimat, a linear, nonlinear multi-scale modeling program for various composite materials such as polymers, rubber, metal, etc. In addition, the aim is to predict the behavior of realistic polymeric composites. In this regard, the tensile properties according to the fiber orientation and strain rate of polybutylene terephthalate (PBT) with short fiber weight fractions of 30wt% among various polymers were investigated using references. Information on the fiber orientation was calculated based on injection analysis using Moldflow software, and was utilized in the finite element model for tensile specimens via a mapping process. LS-Dyna, an explicit commercial finite element code, was used for coupled analysis using Digimat to study the tensile properties of composites according to the fiber orientation and strain rate of glass fibers. In addition, the drawbacks and advantages of LS-DYNA's various anisotropic material models were compared and evaluated for the analysis of glass fiber reinforced plastic composites.

Characteristics Analysis of High Speed Motor (초고속 전동기의 특성해석)

  • Choi, Gil-Sun;Jeong, Jong-Hyun;Hong, Do-Kwan;Woo, Byung-Chul;Jung, Hyun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.808-809
    • /
    • 2011
  • 초고속 전동기는 일반 전동기보다 높은 주파수로인해 철손이 증가하게 된다. 철손의 증가는 더 높은 온도상승을 야기하게 되고, 전동기를 냉각시키지 못하면 열응력과 열화등으로 수명을 단축시킨다. 본 논문에서는 초고속 전동기의 자계-열 연성해석을 통해 전동기의 특성을 해석, 예측하고자 한다.

  • PDF

A Study of the Arcing History in a Thermal Puffer Plasma Chamber with a Coupled Simulation (연성해석을 통한 열파퍼 플라즈마 챔버의 아크현상 이력에 관한 연구)

  • Lee, Jong-Chul;Heo, Joong-Sik;Kim, Youn-Jea
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2506-2511
    • /
    • 2007
  • The coupled simulation is performed to find out the interaction of arc plasmas with surrounding materials in a thermal puffer plasma chamber. In order to be more realistic, PTFE nozzle ablation and Cu electrode evaporation, which are caused by high temperature of arc plasmas, are considered together. Pressure rise and temperature inside the chamber generated during the whole arcing history are investigated with the applied currents. It is very important to define how thermal flow and mass transfer are processing between the arc plasma and surrounding materials for further understanding complex physics inside the chamber. It is concluded that the result might be very useful to understand the mechanism happened inside and to design thermal puffer plasma chambers, but further experimental studies are required to verify the results for the more practical applications.

  • PDF

Analysis of Fluid Structure Interaction on 100kW-HAWT-blade (100kW용 풍력발전기의 블레이드에 대한 유동/구조 연성해석)

  • Kim Yun-Gi;Kim Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.1
    • /
    • pp.41-46
    • /
    • 2006
  • In this study, one-way fluid structure interaction analysis(FSI) on wind turbine blade was performed. Both a quantitative fluid analysis on 3-bladed wind turbine and a structural analysis using the surface pressure data resulting from fluid analysis were carried out. Streamlines and angle of attack was easily acquired from analysis results, we showed the inlet velocity that the stall begins to occur. In the structural analysis, structural displacement and maximum stress of the two comparative models was calculated. The location that has maximum stress was found. The pressure difference between back and front part of the blade increases as the inlet velocity increase. The torque and maximum with regard to inlet velocity was also presented.

  • PDF

Fracture Prediction in Drawing Processes of AZ31 alloy Sheet by the FEM combined with a Ductile Fracture Criterion considering Strain Rate Effect (변형률 의존성 연성파괴이론과 유한요소법에 의한 AZ31합금 판재의 드로잉 성형공정시 파단발생 예측)

  • Kim, Sang-Woo;Lee, Young-Seon;Kim, Dae-Yong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.614-616
    • /
    • 2011
  • 본 연구에서는 유한요소법과 변형률 의존성 연성파괴이론을 이용하여 드로잉 공정에서의 AZ31 마그네슘 합금 판재의 파단 발생을 예측 하였다. 다양한 온도에서의 사각컵 드로잉 실험을 수행하여, 각 온도조건에서의 파단깊이를 측정하였으며, 고온 인장시험을 통해 연성파괴상수를 온도 및 변형률 속도에 의존적인 값으로 표현하고, 실험과 동일하게 모사된 유한요소해석을 수행하였다. 해석결과 얻어진 각 요소의 온도 및 변형률 속도에 따른 연성파괴상수를 이용하여 파단발생을 예측하였으며, 실험결과와 검증하였다.

  • PDF

The effects of thermal expension properties of flexible metal substrates on the Si thin film (금속 연성기판재의 열팽창 특성이 Si 박막 층에 미치는 영향)

  • Lee, Min-Su;Yim, Tai-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.367-369
    • /
    • 2009
  • 플렉서블 태양전지용 연성기판재에는 플라스틱재와 금속재가 있다. 기존의 연성기판인 플라스틱의 경우 열과, 내구성, 화학약품에 약하다는 단점이 있으며, 금속기판은 높은 생산원가, 박판화의 어려움 등의 문제를 안고 있다. 일반적으로 기판재와 cell을 구성하는 반도체 층의 열팽창 거동 차이에 의한 열 변형이 태양전지의 공정안정성에 영향을 주는 것으로 알려져 있으며, cell을 구성하는 반도체 층과 열팽창 거동이 유사한 금속기판재의 적용이 필요하다. Si 박막 태양전지의 경우 Si 열팽창 거동과 비슷한 특성을 갖는 기판재의 개발이 필요하다. 전주법을 적용하여 조성이 다른 Ni계 합금의 열팽창 거동을 TMA 장비를 사용하여 측정하였다. 그리고 전산해석 Tool을 활용하여 가상의 Si 박막 태양전지 제조공정을 설정하고 고온 공정온도에서 상온으로 냉각시 발생되는 층간 열변형 연구를 수행하였고 열팽창 거동이 다른 합금 상에 Si층을 증착하여 열 충격에 의한 결함 발생여부를 관찰하였다.

  • PDF

Coupling Analysis of Slim Type Optical Pick-up using Back Electromotive Force, and Decoupling Control for It (역기전력을 이용한 슬림형 광 픽업의 연성 해석 및 비연성 제어기 설계)

  • Choi, Jin-Young;Lee, Kwang-Hyun;Lee, Jae-Sung;Kim, Sang-Hoon;Yang, Hyun-Seok;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.117-122
    • /
    • 2006
  • A novel method to find interaction dynamics between focusing direction and tracking direction in an optical pick-up is proposed. and the decoupling control to reduce the interaction effect is discussed. First, the basic principle to detect dynamic interaction analysis using back electromotive force is introduced. Second, the interaction analysis between focusing and tracking direction of is analyzed for a commercial slim type optical pick-up. Finally. decoupling control process and its simulation results are shown.

  • PDF

Multi-objective Optimization of Butterfly Valve using the Coupled-Field Analysis and the Statistical Method (연성해석과 통계적 방법을 이용한 Butterfly Valve의 다목적 최적설계)

  • 배인환;이동화;박영철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.127-134
    • /
    • 2004
  • It is difficult to have the existing structural optimization using coupled field analysis from CFD to structure analysis when the structure is influenced of fluid. Therefore in an initial model of this study after doing parameter design from the background of shape using topology optimization. and it is making a approximation formula using by the CFD-structure coupled-field analysis and design of experiment. By using this result, we conducted multi-objective optimization. We could confirm efficiency of stochastic method applicable in the scene of structure reliability design to be needed multi-objective optimization. And we presented a way of design that could overcome the time and space restriction in structural design such as the butterfly valve with the less experiment.