• Title/Summary/Keyword: 연산 기법

Search Result 2,642, Processing Time 0.035 seconds

A Compressed Hot-Cold Clustering to Improve Index Operation Performance of Flash Memory-SSD Systems (플래시메모리-SSD의 인덱스 연산 성능 향상을 위한 압축된 핫-콜드 클러스터링 기법)

  • Byun, Si-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.166-174
    • /
    • 2010
  • SSDs are one of the best media to support portable and desktop computers' storage devices. Their features include non-volatility, low power consumption, and fast access time for read operations, which are sufficient to present flash memories as major database storage components for desktop and server computers. However, we need to improve traditional index management schemes based on B-Tree due to the relatively slow characteristics of flash memory operations, as compared to RAM memory. In order to achieve this goal, we propose a new index management scheme based on a compressed hot-cold clustering called CHC-Tree. CHC-Tree-based index management improves index operation performance by dividing index nodes into hot or cold segments and compressing pointers and keys in the index nodes and clustering the hot or cold segments. The offset compression techniques using unused free area in cold index node lead to reduce the number of slow erase operations in index node insert/delete processes. Simulation results show that our scheme significantly reduces the write and erase operation overheads, improving the index search performance of B-Tree by up to 26 percent, and the index update performance by up to 23 percent.

Indoor localization algorithm based on WLAN using modified database and selective operation (변형된 데이터베이스와 선택적 연산을 이용한 WLAN 실내위치인식 알고리즘)

  • Seong, Ju-Hyeon;Park, Jong-Sung;Lee, Seung-Hee;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.932-938
    • /
    • 2013
  • Recently, the Fingerprint, which is one of the methods of indoor localization using WLAN, has been many studied owing to robustness about ranging error by the diffraction and refraction of radio waves. However, in the signal gathering process and comparison operation for the measured signals with the database, this method requires time consumption and computational complexity. In order to compensate for these problems, this paper presents, based on proposed modified database, WLAN indoor localization algorithm using selective operation of collected signal in real time. The proposed algorithm reduces the configuration time and the size of the data in the database through linear interpolation and thresholding according to the signal strength, the localization accuracy, while reducing the computational complexity, is maintained through selective operation of the signals which are measured in real time. The experimental results show that the accuracy of localization is improved to 17.8% and the computational complexity reduced to 46% compared to conventional Fingerprint in the corridor by using proposed algorithm.

A Simulator for Performance Evaluation of Multithreaded Memory Allocation Operation in Multi-Core Environment (멀티코어 환경에서의 멀티스레드 기법을 이용한 메모리 할당 연산의 성능 평가를 위한 시뮬레이터)

  • Kim, Ho-Young;Huang, Dada;Han, Sang-Hyuck;Kim, Young-Kuk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06a
    • /
    • pp.245-247
    • /
    • 2012
  • 최근 멀티코어 프로세서의 활용이 대중화되고 있다. 멀티코어 시스템에서는 소프트웨어가 동시에 여러 코어를 사용하여 동작을 수행 할 때 성능 향상 효과를 얻을 수 있다. 즉, 하나의 소프트웨어가 여러 코어를 동시에 사용할 수 있는 멀티스레드 프로그래밍 기법을 사용할 때 성능을 높일 수 있다. 이러한 환경에서 효율적인 메모리 할당은 데스크톱, 서버 및 과학 등과 같은 응용에 매우 중요하다. 하지만, 동적으로 메모리를 할당하는 것은 메모리 할당 연산과 반환 연산 및 어떤 스레드가 다른 스레드의 힙 영역에 접근하는 것을 처리하기 위한 동기화 문제로 인한 오버헤드가 발생하여 성능에 영향을 끼치는 문제가 발생하게 된다. 따라서 이와 같은 환경에서 실제로 성능에 어느 정도 영향을 끼칠 것인가를 측정할 수 있는 도구가 필요하다. 이에 멀티코어 환경에서 멀티스레드 기법을 사용하여 메모리 할당 연산이 성능에 어떠한 영향을 끼치는지를 측정 및 평가할 수 있는 시뮬레이터인 MAES(Memory Allocation Evaluation Simulator)를 설계하고 구현한다.

Secure Multiplication Method against Side Channel Attack on ARM Cortex-M3 (ARM Cortex-M3 상에서 부채널 공격에 강인한 곱셈 연산 구현)

  • Seo, Hwajeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.4
    • /
    • pp.943-949
    • /
    • 2017
  • Cryptography implementation over lightweight Internet of Things (IoT) device needs to provide an accurate and fast execution for high service availability. However, adversaries can extract the secret information from the lightweight device by analyzing the unique features of computation in the device. In particular, modern ARM Cortex-M3 processors perform the multiplication in different execution timings when the input values are varied. In this paper, we analyze previous multiplication methods over ARM Cortex-M3 and provide optimized techniques to accelerate the performance. The proposed method successfully accelerates the performance by up-to 28.4% than previous works.

Operation Rearrangement for Low-Power VLIW Instruction Fetches (저전력 VLIW 명령어 추출을 위한 연산재배치 기법)

  • Sin, Dong-Gun;Kim, Ji-Hong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.10
    • /
    • pp.530-540
    • /
    • 2001
  • As mobile applications are required to handle more computing-intensive tasks, many mobile devices are designed using VLIW processors for high performance. In VLIW machines where a single instruction contains multiple operations, the power consumption during instruction fetches varies significantly depending on how the operations are arranged within the instruction. In this paper, we describe a post-pass optimal operation rearrangement method for low-power VLIW instruction fetch, The proposed method modifies operation placement orders within VLIW instructions so that the switching activity between successive instruction fetches is minimized. Our experiment shows that the switching activity can be 34% on average fro benchmark programs.

  • PDF

An Technique for the Active Rule Condition (능동규칙의 조건부 처리 기법)

  • 이기욱
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.4
    • /
    • pp.49-54
    • /
    • 1998
  • AS it takes a considerable time for database operations for processing the condition part of active rule, the operations have an important effect on the efficiency of active database system. The processing time of operations should be minimized in order to improve the efficiency of system. The previous works are limited to basic database operations and the partial aggregate functions. In this paper, the processing technique using the structuralization and the state table of relations is suggested. The processing time for basic database operations can be reduced with the structuralization of relations to classification tree and the introduction of deletion information table. With the introduction of binary search tree and relation state table, the aggregate function which has a big of processing cost can be processed effectively and the function of the active database system can be maximized.

  • PDF

Topic maps Matching and Merging Techniques based on Partitioning of Topics (토픽 분할에 의한 토픽맵 매칭 및 통합 기법)

  • Kim, Jung-Min;Chung, Hyun-Sook
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.819-828
    • /
    • 2007
  • In this paper, we propose a topic maps matching and merging approach based on the syntactic or semantic characteristics and constraints of the topic maps. Previous schema matching approaches have been developed to enhance effectiveness and generality of matching techniques. However they are inefficient because the approaches should transform input ontologies into graphs and take into account all the nodes and edges of the graphs, which ended up requiring a great amount of processing time. Now, standard languages for developing ontologies are RDF/OWL and Topic Maps. In this paper, we propose an enhanced version of matching and merging technique based on topic partitioning, several matching operations and merging conflict detection.

Hardware Implementation of Optical Fault Injection Attack-resistant Montgomery exponentiation-based RSA (광학 오류 주입 공격에 강인한 몽고메리 지수승 기반 RSA 하드웨어 구현)

  • Lee, Dong-Geon;Choi, Yong-Je;Choi, Doo-Ho;Kim, Minho;Kim, Howon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.76-89
    • /
    • 2013
  • In this paper, we propose a novel optical fault detection scheme for RSA hardware based on Montgomery exponentiation, which can effectively detect optical fault injection during the exponent calculation. To protect the RSA hardware from the optical fault injection attack, we implemented integrity check logic for memory and optical fault detection logic for Montgomery-based multiplier. The proposed scheme is considered to be safe from various type of attack and it can be implemented with no additional operation time and small area overhead which is less than 3%.

An Effective Location Acquisition Method Based on RFID for Location Based Services (위치 기반 서비스를 위한 RFID 기반의 효과적인 위치 인식 기법)

  • Bok, Kyoung-Soo;Lee, Mi-Sook;Park, Yong-Hun;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.37 no.1
    • /
    • pp.33-43
    • /
    • 2010
  • In this paper, we propose a new location acquisition scheme based on RFID that reduces the computation cost of location acquisition and keeps the accuracy of the location. In addition, we propose an incremental location update policy to reduce the location update cost for moving objects. To show the superiority of our proposed scheme, we compare it with the existing researches. It is shown through various experiments that the proposed system reduces the computation cost of location estimation 500 times more than existing researches. Also, the proposed system significantly reduces the cost of location update using the RFID-based update policy.

On-Line/Off-Line Signature Schemes with Tight Security Reduction to the RSA Problem (RSA 문제와 동등한 안전성을 갖는 온라인/오프라인 서명 기법)

  • Choi, Kyung-yong;Park, Jong Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.327-338
    • /
    • 2018
  • On-line/off-line signature is a technique for performing heavy computations required for signature generation in the off-line stage and completing the final signature by a simple operation in the online stage. This is suitable for application environments that require immediate signing responses to multiple users. In this paper, we propose two new on-line/off-line signature schemes based on RSA problem. The first technique can generate a signature with a fixed base exponentiation when signing online, and the second technique can complete an online signature with a very simple calculation such as a hash operation. The security of both signatures is based on the RSA problem, which is proven to be tightly secure without security loss in the random oracle model.