• Title/Summary/Keyword: 연막수류탄

Search Result 3, Processing Time 0.018 seconds

Storage Life Evaluation of a Violet Smoke Hand Grenade(KM18) using Degradation Data (열화데이터를 이용한 자색 연막수류탄(KM18)의 저장수명 평가)

  • Chang, Il-Ho;Hong, Suk-Hwan;Jang, Hyun-Jeung;Son, Young-Kap
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.215-223
    • /
    • 2012
  • A violet smoke hand grenade(KM18) is used to generate signals. The grenade is considered to fail when its smoke emission time is longer than the specified one so that its smoke concentration becomes lighter. Accelerated degradation test for the grenade was performed, and then failure in smoke emission time was reproduced from the test. Stress for the degradation test was selected as temperature/humidity from the pre-test results. Degraded data of emission time from the accelerated test were analyzed through applying a distibution-based degradation model. Then, Peck Model was applied to predict the storage life under field conditions. In addition, the predicted storage life was compared with that of ASRP(Ammunition Stockpile Reliability Program).

Efficient Process Control Through Research on Storage Lifetime of a White Smoke Hand Grenade, KM8 (저장수명 연구를 통한 백색 연막수류탄(KM8)의 공정관리 효율화)

  • Chang, Il-Ho;Hong, Suk-Hwan;Back, Seung-Jun;Son, Young-Kap
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.888-896
    • /
    • 2011
  • A white smoke hand grenade, KM8 is used to make smoke screen in order to provide visual field interceptions or signals. The grenade fails when its time to emit smoke is longer than the specified emission time so that the smoke concentration becomes lighter. This paper considered failure in smoke emission time, and evaluated its storage lifetime. The main objective of this paper is to modify the present specification limits of smoke emission time for the efficient process control in manufacturing, through analyzing effect of its specification change on the storage lifetime, based on the lifetime evaluation results. Accelerated degradation test was performed and then failure in smoke emission time was reproduced from the test. And estimated storage lifetimes from the accelerated test results was compared to evaluated lifetimes of grenades using the ASRP data. Past process testing results of the grenade in manufacturing were analyzed in this paper. Then, each storage lifetime for the specifications, ${\pm}3$ and ${\pm}5$ in seconds, extended from the current specification in manufacturing were estimated using the past testing results, and compared to one another.

A Study on Chemical Structure of White Smoke Grenade by Aging (가속노화에 따른 백색 연막수류탄(M8)의 화학적 구조 변화에 관한 연구)

  • Park, Jang-Ho;Cho, Min-Su;Kim, Young-Dae;Lee, Byung-Teak;Chang, Il-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1186-1191
    • /
    • 2011
  • Composition which was used as a white smoke grenade consists of Aluminium(Al), Hexachloroethane(HCE) and Zinc Oxide(ZnO), etc. there is a possibility of misfire due to long term storage and there are very few reports on the mechanism behind misfire. In this study, an experimental method known as accelerated degradation testing is used to investigate the chemical mechanism resulting in misfire. The mechanism of chemical change during long term storage was analyzed with XRD and FT-IR. Analysis results suggest that a part of HCE consisting of the white smoke grenade disappeared and the other part was combined into $ZnCl_2$, $AlCl_3$, as a recycled intermediate product under closed system.