• Title/Summary/Keyword: 연료 종류

Search Result 341, Processing Time 0.019 seconds

Study on the Fuel Decomposition Characteristics and Coke Formation by Type of Endothermic Fuel and Method of Catalyst Molding (흡열연료 종류와 촉매 성형 방법에 따른 분해특성과 코크 생성에 관한 연구)

  • Lee, Tae Ho;Kang, Saetbyeol;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.611-619
    • /
    • 2019
  • This study was carried out to investigate fuel decomposition characteristics and coke formation according to types of endothermic fuels and methods of catalyst molding. Methylcyclohexane (MCH), n-dodecane, and exo-tetrahydrodipentadiene (exo-THDCP) were used as the endothermic fuels. As a catalyst, USY720 supported with platinum was used. It was manufactured by only using pressure to disk-type, or pelletized with a binder and a silica solution. The characteristics of the catalysts according to the molding method were analyzed by X-ray diffraction analysis, scanning electron microscopy, nitrogen adsorption-desorption isotherm, and ammonia temperature programmed desorption analysis. The reaction was carried out under conditions of high temperature and high pressure ($500^{\circ}C$, 50 bar) in which the fuel could exist in a supercritical state. The product was analyzed by gas chromatograph/mass spectrometer and the coke produced by the catalyst was analyzed by thermogravimetric analyzer. After the reaction, the composition of the products varied greatly depending on the structure of the fuel. In addition, the crystallinity and surface properties of the catalysts were not changed by the method of catalyst molding, but the changes of the acid sites and the pore characteristics were observed, which resulted in changes in the amount and composition of products and coke.

Thermal and Flow Characteristics of Fluid with Fuel Type and Equivalence Ratio in Flame Spray Process (연료 종류 및 당량비에 따른 Flame Spray 화염장의 열-유동 특성 연구)

  • Lee, Jae Bin;Kim, Dae Yun;Shin, Dong Hwan;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.202-208
    • /
    • 2013
  • The present study aims to investigate the flow characteristics with respect to fuel type and equivalence ratio in the flame spray coating process. The flame spray flow is characterized by much complex phenomena including combustion, turbulent flows, and combined heat transfer. The present study numerically simulated the flam spray process and examined the gas dynamics involving combustion, gas temperature and velocity distributions in flame spray process by using commercial computational fluid dynamics (CFD) code of FLUENT (ver. 13.0). In particular, we studied the effect of fuel type and equivalence ratio on thermal and flow characteristics which could substantially affect the coating performance. From the results, it was found that the gas temperature distributions were varied with different fuels because of reaction times were different according to the fuel type. The equivalence ratio also could change the spatial flame distribution and the characteristics of coated layer on the substrate.

Effects of Inert Gas Composition Variations in Biogas on the Performance of a SI Engine (바이오가스 내의 불활성 가스 성분 변화가 SI 엔진 성능에 주는 영향)

  • Lee, Sunyoup;Park, Seunghyun;Park, Cheolwoong;Kim, Changgi;Lee, Janghee;Woo, Sejong
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.14-20
    • /
    • 2012
  • Biogas can be obtained from biogenic materials through an anaerobic digestion process. Since biogas has low calorific value and its composition significantly varies, appropriate combustion strategies need to be established to obtain stable combustion in engine applications. In this study, efforts have been made to investigate the effects of inert gas composition variations on engine performance and emissions. Results show that the MBT spark timing was advanced and $NO_x$ was reduced as the inert gas in the biogas rose. Moreover, $NO_x$ emission drop in $CO_2$ diluted biogas was more significant than that of $N_2$ due to higher heat capacity of $CO_2$, while THC emissions showed the opposite tendency. Thermal efficiency was increased in $N_2$ case with elevation of $N_2$ due to the decreased heat loss and PMEP. However, there is no difference in $CO_2$ case because of deteriorated flame propagation speed.

Characteristics of Coal Water Fuel by Various Drying Coals, Surfactants and Particle Size Distribution Using Low Rank Coal (건조된 저등급석탄과 첨가제 및 입자크기에 대한 석탄-물 혼합연료(CWF)의 특성)

  • Kim, Tae Joo;Kim, Sang Do;Lim, Jeong Hwan;Rhee, Young Woo;Lee, Si Hyun
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.464-468
    • /
    • 2013
  • In this study, in order to increase solid content of coal water fuel (CWF), various experimental parameters (i.e., coal type, additive, particle size distribution, drying method) were evaluated. To investigate the drying method, specimen is compared to using flash dry, fluidized bed dry and oil deposit stabilized coal. Difference of the solid content between low rank coal and high rank coal in this case indicate that high rank coal exhibits more higher than 20% of the solid cotent. And specimen for dispersibility was prepared by using dispersing agent of 4 types. As a result, using the dispersing agent was shown 5% higher in sold content than the case of not using the dispersing agent. Efficiency of CWF was improved by using fine coal of 80% in the particle size distribution of coal. Result of CWF using drying methods of 3 types, oil deposit stabilized (ODS) coal dried and stabilized was effective 12% higher in sold content than raw coal.

Research on the Dispersion Stability and Scale up of Carbon Slurry Fuel (카본슬러리 연료의 분산안정성 개선 및 scale up 제조 연구)

  • Cho, Min-Ho;Yang, Mun-Kyu;Lee, Ik-Mo;Cho, Joon-Hyun;Kwon, Tae-Soo;Jeong, Byung-Hun;Han, Jeong-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.34-40
    • /
    • 2009
  • For the preparation of carbon-slurry fuel, the effects of process parameters on the carbon dispersion stability in the liquid fuel have been investigated. The dispersion stability of carbon-slurry fuels could be monitored by measurements of particle size and carbon contents in the different positions, and observation of dispersion states after centrifuging. Through the application of various additives, it was found that NB463S84 based on polyolefin succinimde showed the best dispersion and longest stability life of carbon-slurry fuel. Also, PIBSI (polyisobutenyl succimide) with the similar functional groups to NB463S84 was effectively synthesized and same dispersion stability was verified by application to carbon-slurry fuel. Finally, the possibility of practical use of carbon-slurry fuels was confirmed by application of the mixing conditions obtained from g scale to kg scale preparation.

A Study on Combustion Characteristic with Mass Flux of Solid fuel in Single Port Hybrid Rocket (Single Port 하이브리드 로켓에서의 고체연료 질량유속을 고려한 연소특성 연구)

  • Lee Jung-Pyo;Kim Soo-Jong;Lee Seung-Chul;Kim Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.246-250
    • /
    • 2006
  • In general, combustion characteristic of hybrid propulsion was shown with the regression rate depending on only massflow rate of oxidizer But this empirical relation was not represented well effect of the thermo-chemical properties of solid fuel. So, in this study, the combustion characteristics was studied with the mass transfer number(B number) of solid fuel instead of regression rate with various fuel. The PMMA, PP, and PE were used as fuel, and gas oxygen as oxidizer in this experiment. The mass flowrate of gas oxigen was controlled by the several chocked orifices that have different diameter, and the oxidizer supply range was $3.66\sim45.3g/sec$. As result, the empirical relation for mass flux of solid fuel was obtained with mass transfer number, and mass flux of oxidizer as follow; $\dot{m}^{'}_f\;=\;0.0175G^{0.55}B^{0.4}$.

  • PDF

Determination of Fuel Properties for Blended Biodiesel from Various Vegetable Oils (다양한 식물성오일로부터 생산된 바이오디젤의 혼합에 따른 연료특성 분석)

  • Lim, Young-Kwan;Jeon, Cheol-Hwan;Kim, Shin;Yim, Eui Soon;Song, Hung-Og;Shin, Seong-Cheol;Kim, DongKil
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.237-242
    • /
    • 2009
  • Various type of alternative fuel have been developed due to exhaustion of fossil fuel reserves and high oil price. Biodiesel is produced from the reaction of triglyceride, which is main component of animal fat and vegetable oil, and methanol by methanolysis as it is known for eco- friendly fuel for alternative petrodiesel. In this work, it was analyzed for the characteristics of the blended biodiesel with domestic petrodiesel according to blending ratio. Density, kinematic viscosity and flash point were increased with increasing the content of biodiesel. But the characteristic of blended biodiesel fuel were changed to aggravate in low temperature. Also, the derived cetane number(DCN) from IQT was increased by added biodiesel. Especially, the DCN of biodiesel from palm oil showed 71.26.

A Study on Economical Operation of a Ship's Main Engine - The case of Training Ship SAENURI - (선박 기관의 경제적 운전에 관한 연구 - 실습선 새누리호를 중심으로 -)

  • Kim, Hong-Ryeol;Kim, Bu-Gi;Rim, Geung-Su;Kim, Deug-Bong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.1
    • /
    • pp.52-58
    • /
    • 2013
  • Operation Abstract : Operational cost required for navigating a ship may differ from according to type, scale, economic speed, navigation area and other factors. However, it is known that the fuel oil price ratio takes 50~60 %. It is the current trend because of the use of poor quality fuel and it is reviewed even for small to medium sized ships to save the operational costs due to the recent rise of international oil price. Furthermore, ocean carriers are taking action to low speed navigation as the alternative method of reducing fuel consumption. Hence, in this study, fuel consumption of main engine was measured by using actual operating ship data compared with sea speed at sea. It was suggested that the area of M/E's load(70 %) lower than NCR is the optimal navigating condition through the relation between speed and fuel consumption compared with advance ratio together with the load.

Adsorptive Desulfurization of Diesel for Fuel Cell Applications: A Screening Test

  • Ho, Hoang Phuoc;Kim, Woo Hyeong;Lee, So-Yun;Son, Hong-Rok;Kim, Nak Hyeon;Kim, Jae-Kon;Park, Jo-Yong;Woo, Hee Chul
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.88-94
    • /
    • 2014
  • During the past decades much attention has been paid to the desulfurization of diesel oil which is important as a source for the fuel cells to prevent the sulfur poisoning of both diesel steam reforming catalyst and electrode of fuel cell. Although alternative desulfurization techniques have been investigated, desulfurization for ultra-low sulfur diesel (ULSD) is still challenged. Therefore, this research focuses on the desulfurization of commercial ULSD for the application to molten carbonate fuel cell (MCFC). Herein, the performances of several kinds of commercial adsorbents based on activated carbons, zeolites, and metal oxides for desulfurization of ULSD were screened. The results showed that metal oxides based materials can feasibly reduce sulfur concentration in ULSD to a level of 0.1 ppmw while activated carbons and zeolites did not reach this level at current conditions.

Basic Experimental Study on the Application of Biofuel to a Diesel Engine (바이오연료의 엔진 적용을 위한 실험적 기초연구)

  • Yeom, Jeong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1163-1168
    • /
    • 2011
  • Compared with the spark-ignition gasoline engine, the compression-ignition diesel engine has reduced fuel consumption due to its higher thermal efficiency. In addition, this reduction in the fuel consumption also leads to a reduction in $CO_2$ emission. Diesel engines do not require spark-ignition systems, which makes them less technically complex. Thus, diesel engines are very suitable target engines for using biofuels with high cetane numbers. In this study, the spray characteristics of biofuels such as vegetable jatropha oil and soybean oil were analyzed and compared with those of diesel oil. The injection pressures and blend ratios of jatropha oil and diesel oil (BD3, BD5, and BD20) were used as the main parameters. The injection pressures were set to 500, 1000, 1500, and 1600 bar. The injection duration was set to $500{\mu}s$. Consequently, it was found that there is no significant difference in the characteristics of the spray behavior (spray angle) in response to changes in the blend ratio of the biodiesel or changes in the injection pressure. However, at higher injection pressures, the spray angle decreased slightly.