• Title/Summary/Keyword: 연료 물성치

Search Result 50, Processing Time 0.025 seconds

Analysis of Spray Characteristic for 3-Component Mixed Fuel (3 성분 혼합연료의 분무특성 해명)

  • Myong, Kwang-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.589-595
    • /
    • 2009
  • The instability wave formed near nozzle region grows to vortex with large scale in downstream region of spray. It plays an important role in the fuel-air mixing, combustion process and engine exhaust emissions in direct injection diesel engine. The objective of this study is to analyze effect of variant parameters (injection pressure, ambient gas density, etc.) and fuel properties on spray instability near nozzle region. Spray structure near nozzle region was investigated using a magnification photograph. A pulsed Nd-YAG laser was used as a light source, and image was taken by CCD camera. The following conclusions are drawn from this experimental analysis. In low ambient density, the effect of fuel properties on spray instability near nozzle region is dominant. In high ambient density, the effect of ambient gas on spray instability near nozzle region is dominant. High jet velocity has strong influence on spray instability.

A Numerical Simulation of Regenerative Cooling Heat Transfer Processes for the Liquid Propellant Rocket Engine (액체추진제 로켓엔진의 재생냉각 열전달과정 전산모사)

  • 서호원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.54-61
    • /
    • 1998
  • A numerical simulation is attempted for the regenerative cooling heat transfer processes of the liquid propellant rocket engine. The heat transfer from the combustion gases to the thrust chamber wall is called gas side heat transfer. This heat is conducted radially to the coolant through the carbon deposit and metallic wall of thrust chamber Finally, this heat is convected away by the coolant flowing along the passages in the thrust chamber. The equivalence of these three heat fluxes of the above processes is utilized to determine the coolant side wall temperature, gas side wall temperature and the heat flux. When the number and shape(width, height) of coolant passages, the shape(size) of thrust chamber, oxidant and fuel properties, coolant properties, oxidant/fuel mixture ratio, coolant inlet temperature, the thickness of carbon deposit formed along the thrust chamber wall during combustion are given, reasonable radial direction temperature distributions and heat fluxes along the thrust chamber axis are obtained.

  • PDF

Analysis of Endothermic Regenerative Cooling Technologies by Using Hydrocarbon Aviation Fuels (탄화수소 항공유를 이용한 흡열재생냉각 기술분석)

  • Lee, Hyung Ju
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.113-126
    • /
    • 2021
  • In order to develop active cooling systems for a hypersonic cruise vehicle, a series of studies need to be preceded on regenerative cooling technologies by using endothermic reaction of liquid hydrocarbon aviation fuels. Among them, it is essential to scrutinize fluid flow/heat transfer/endothermic pyrolysis characteristics of supercritical hydrocarbons in a micro-channel, as well as to acquire thermophysical properties of hydrocarbon fuels in a wide range of temperature and pressure conditions. This study, therefore, reviewed those technologies and analyzed major findings in related research areas which have been carried out worldwide for the development of efficient operational regenerative cooling systems of a hypersonic flight vehicle.

Effect of Nation binder with different equivalent weight on cell performance (이온당량(EW)이 다른 Nafion binder가 고분자 전해질 연료전지의 성능에 미치는 영향)

  • Kim, Kun-Ho;Kim, Hyoung-Juhn;Lim, Tae-Hoon;Lee, Kwan-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.129-132
    • /
    • 2007
  • 고분자 전해질 연료전지의 성능에 영향을 주는 많은 인자들 중에서도 촉매층의 조성과 구조의 최적화는 성능변화에 큰 요인으로 작용 된다. 촉매층내 반응 활성점인 삼상계면을 형성시키기 위해 함침하는 Nafion binder를 anode와 cathode의 두 전극에 이온당량(Equivalent weight, EW)이 동일하게 함침시켜 그 성능을 확인하였다. 그 결과를 토대로 anode와 cathode에 이온당량을 각기 다르게 하여 각각의 전극마다 이온당량이 미치는 영향에 대해서도 살펴보았다. Anode와 cathode의 이온당량을 동일하게 EW1100, EW1000, EW900으로 변화 시켜주었을 경우 이온당량의 물성치가 상대적으로 향상된 EW900의 단위 전지 성능이 가장 우수하였으며, 이온당량이 EW900이었을 때 최적의 Nafion binder 함침량은 EW1100의 Nafion binder 함침량과 동일하였다. Anode와 cathode에 함침하는 Nafion binder의 이온당량을 각각 EW1100과 EW900, EW900과 EW1100으로 MEA를 제조하여 전극에 따라 이용당량이 미치는 영향을 살펴보았다.

  • PDF

PEMFC Optimization Design Using Genetic Algorithm (유전자 알고리즘을 이용한 고분자 전해질 연료전지 최적화 설계)

  • Yang, Woo-Joo;Wang, Hong-Yang;Lee, Dae-Hyung;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.889-897
    • /
    • 2014
  • This paper presents a method for finding an optimized result by using a genetic algorithm (GA) based on a PEMFC analysis result. The conventional analysis method designs fuel cells one-by-one, and each result is compared to obtain the best performance. Because the computational burden of the conventional analysis is enormous, the present optimization process provides an inefficient tool by automatically setting the boundary and material properties and mesh generation. As the change can be reflected automatically in the channel geometry with GA, the fuel cell analysis result with various sizes can be obtained easily. Therefore, the global maximum performance can be obtained through a GA optimization procedure.

Mass Transfer Analysis of Metal-Supported and Anode-Supported Solid Oxide Fuel Cells (금속지지체형 고체산화물연료전지와 연료극지지체형 고체산화물연료전지의 물질전달 특성분석)

  • Park, Joon-Guen;Kim, Sun-Young;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.317-324
    • /
    • 2010
  • Metal-supported solid oxide fuel cells (SOFCs) have been developed to commercialize SOFCs. This new type of SOFC has high mechanical strength, but its mass transfer rate may be low due to the presence of a contact layer. In this study, the mass transfer characteristics of an anode-supported SOFC and a metal-supported SOFC are studied by performing numerical simulation. Governing equations, electrochemical reactions, and ceramic physical-property models are determined simultaneously; molecular diffusion and Knudsen diffusion are considered in mass transport analysis of porous media. The experimental results are compared with simulation data to validate the results of numerical simulation. The average current density of the metal-supported SOFC is 23% lower than that of the anode-supported SOFC. However, because of the presence of the contact layer, the metal-supported SOFC has a more uniform distribution than the anode-supported SOFC.

Basic Study of Spray-Behavior Characteristics of Emulsified Fuel (에멀젼연료의 분무거동특성에 관한 기초연구)

  • Yeom, Jeong Kuk;Yoon, Jeong Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.763-771
    • /
    • 2014
  • As a preliminary study on the spray behavior characteristics of emulsified fuel, the fuel properties (viscosity, surface tension, and density) and evaporation characteristics of a fuel droplet were investigated. The emulsified fuel was made by mixing diesel and $H_2O_2$. In addition, the macroscopic spray behavior characteristics such as the spray penetrations and spray angles of the emulsified and diesel fuels were compared. The stirring condition of the emulsified fuel was a 9:1 mixture of the diesel fuel and the surfactant span 80. The mixing ratios for the hydrogen peroxide were set at EF2, EF12, EF22, EF32, EF42, EF52, EF62, EF72, EF82, and EF92. The injection pressures were set at 400, 600, 800, and 1000 bar. We found that as the mixing ratio of the hydrogen peroxide was increased from EF2 to EF52, the viscosity of the emulsified fuel increased. However, afterward, the viscosity of the emulsified fuel gradually decreased and approached the viscosity value of the diesel fuel. Therefore, generally oil-in-water emulsions were used for the hydrogen peroxide mixing ratios up to 52 (EF52), and water-in-oil emulsions were used for the hydrogen peroxide mixing ratios above 52. Finally, the spray behavior characteristics (spray penetration and spray angle) of the emulsified fuel were found to be almost independent of the mixing ratio.

Rapid Characterization and Prediction of Biomass Properties via Statistical Techniques

  • Cho, Hyun-Woo
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.265-271
    • /
    • 2012
  • The use of renewable energies has been required to diminish the dependency on fossil fuels. As one of clean energy sources biomass has been extensively studied because various biomass resources necessitated rapid characterization of their chemical and physical properties in an on-line or real-time basis. For such an analysis near-infrared (NIR) spectroscopy has been successfully applied because of its non-invasive and informative characteristics. In this work, the applicability of nonlinear chemometric techniques based on biomass near infrared (NIR) data is evaluated for the rapid prediction of ash/char contents in different types of biomass. The prediction results of various prediction models and the effect of using preprocessing methods for NIR data are compared using six types of biomass NIR data. The results showed that nonlinear prediction models yielded better prediction performance than linear ones. It also turned out that by adopting the use of proper preprocessing methods the performance of prediction of biomass properties improved.

The Effect of Property of Emulsified Fuel and Injection Pressure on the Spray Characteristics for Super-Critical-Pressure Burner (초임계압 보일러용 유화연료의 물성치와 분사압력이 분무특성에 미치는 효과)

  • Lee, I.S.;Jung, J.W.;Cha, K.J.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.38-44
    • /
    • 2002
  • The purpose of this study is to investigate the effect of the volume fraction of water and injection pressure on the spray characteristics of water/oil emulsified fuel injected from the pressure swirl atomizer. The mixture of light oil and water by using impeller mixer was performed. The spray characteristics such as SMD and velocity were measured using PDPA. The injection pressures were 7.5, 100, 200 and $300kgt/cm^2$ and volume fractions of water in emulsified fuel were 0, 10, 20 and 30%, respectively. The measurement sections were at 30, 60 and 90mm from injection nozzle tip. SMD and velocity of emulsified fuel were larger gradually by increasing the volume fraction of water in emulsified fuel. The spray angle was decreased and axial velocity was increased with increase in water content. It was found that the relative SMD ratio was increased more greatly than the relative axial velocity ratio in super critical pressure. The relative SMD ratio was increased and the relative axial velocity ratio was decreased with increase injection pressure at spray downstream.

  • PDF

Experimental Study on Mixing Stability and Macroscopic Spray Characteristics of Diesel-gasoline Blended Fuels (디젤-가솔린 혼합연료의 혼합안정성 및 거시적인 분무 특성에 관한 실험적 연구)

  • Park, Sewon;Park, Su Han;Park, Sungwook;Chon, Mun Soo;Lee, Chang Sik
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.121-127
    • /
    • 2012
  • The study is to investigate the mixing stability, fuel properties, and macroscopic spray characteristics of diesel-gasoline blended fuels in a common-rail injection system of a diesel engine. The test fuels were mixed diesel with gasoline fuel, which were based volume fraction of gasoline from 0 to 100% in 20% intervals. In order to analyze the blended effect of gasoline to diesel fuel, the properties of test fuels such as density, viscosity, and surface tension were measured. In addition, the spray behavior characteristics were studied by investigating the spray tip penetration and spray angle using a spray images through a spray visualization system. It was revealed that the density, kinematic viscosity and surface tension of diesel-gasoline blending fuels were decreased with the increase of gasoline fuel. The injection quantity of test fuels were almost similar level at short energizing duration condition. On the other hand, the increase of energizing duration shows the decrease of injection quantity compared to short energizing duration. The test blending fuels have similar growth in Spray tip penetration and Spray cone angle.