• 제목/요약/키워드: 연료전지 냉시동

검색결과 12건 처리시간 0.028초

차량용 고분자전해질 연료전지의 냉시동 특성 (Characteristics of cold startup in automotive PEMFC)

  • 고재준;권순길;금영범;이종현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.137-141
    • /
    • 2007
  • The startup behaviour of PEM fuel cells at subfreeze zero is one of the most challenging tasks to be solved before PEM fuel cell vehicle is commercialized. Automotive companies are trying to increase cold statup capability of fuel cell. In this study, we found out the design factor of the stack to increase cold startup capability using 4kW stack and then cold startup test was performed at the various shutdown condition and the various current. In order to test the cold startup possibility and capability in vehicle, we installed 80kW stack in the vehicle and this 80kW fuel cell vehicle was housed in an environmental chamber to investigate the characteristics of cold startup and driving. We found that it is possible for fuel cell vehicle with 80kW stack to self-heated cold startup and drive at $-15^{\circ}C$.

  • PDF

Axiomatic Design 기법을 이용한 연료전지 냉시동 특성 개선에 관한 연구 (Investigation on the cold start characteristics of PEMFC using Axiomatic Design approach)

  • 서정도;이성호;안병기;임태원;유하나;이대길
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.17-20
    • /
    • 2008
  • Cold start of a fuel cell system is a major obstacle should be overcome as to commercialize it, especially for passenger vehicle applications. However, the cold start characteristics is so complicated since it involves various phenomenon such as ice-blocking in GDL, ionic conductivity in membrane affected by water activity with phase change, heat transfer through components such as bipolarplates or endplates, electro-chemical reactions affected by circumferential temperature and humidity as well. Axiomatic design provides a systematic method to investigate the complex phenomenon although it was developed as a methodology to establish logical design procedure by Nam P. Suh in 1990s. This paper presents a framework to approach the complex cold start problem using Axiomatic Design which features simplifying a problem through hierarchical decomposition and decoupling from the view of functional requirements and design parameters.

  • PDF

연료전지 차량의 냉시동성 개선을 위한 금속 분리판 표면의 바나듐 산화물 박막 제조 및 특성 분석에 관한 연구 (An Experimental Study of Synthesis and Characterization of Vanadium Oxide Thin Films Coated on Metallic Bipolar Plates for Cold-Start Enhancement of Fuel Cell Vehicles)

  • 정혜미;노정훈;임세준;이종현;안병기;엄석기
    • 대한기계학회논문집B
    • /
    • 제35권6호
    • /
    • pp.585-592
    • /
    • 2011
  • 냉시동 성능 개선은 연료전지 차량의 고분자 전해질 연료전지 발전 모듈 및 시스템의 내구성과 신뢰성 향상의 측면에서 매우 중요하다. 이에 본 연구에서는 영하의 기후에서 연료전지 차량의 초기 구동 시금속 분리판 표면에 형성된 바나듐 산화물 박막의 자기 발열 특성을 이용하여 신속한 온도 상승 구현이 가능한 냉시동 향상 기술을 제안하고, 실험적 방법을 통해 그 적용 가능성을 검증하였다. 졸-겔 침지 법에 의해 제조된 바나듐 산화물 박막의 특성 평가를 위해 X 선 회절, 광전자 분광, 전자 주사 현미경을 이용한 화합물 조성 및 미세구조 분석, 4-탐침법을 이용한 $-20{\sim}80^{\circ}C$의 온도 구간에서의 온도-저항 이력 특성 분석을 각각 수행하였다. 본 실험 결과, 냉시동 조건에서 박막의 자기 발열량은 연료전지 내부의 생성 수 결빙 방지에 필요한 열 에너지를 모두 충족시킬 수 있음을 확인하였다.

투싼 연료전지 하이브리드 차량 개발 (Development of Tucson Fuel Cell Hybrid Electric Vehicle)

  • 전순일;최서호;권순우;이규일;정성진;윤성곤
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.357-360
    • /
    • 2005
  • Hyundai Motor Company developed the second generation of fuel cell hybrid electric vehicle based on Tucson SUV in 2004. This vehicle has cold start capability below -10C and its driving performances including maximum speed and accelerating time are almost similar to conventional Tucson SUV's performances without any sacrifice in terms of cabin space. Especially. the cold start capability was realized by utilizing only internal power sources such as fuel cell power and high voltage lithium ion polymer battery. In this paper, we will briefly introduce specifications of Tucson FCEV and its driving performances based on field test and simulations.

  • PDF

연료전지 자동차용 TMS 히터 개발 (Development of Thermal Management System Heater for Fuel Cell Vehicles)

  • 한수동;김성균;김치명;박용선;안병기
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.484-492
    • /
    • 2012
  • The TMS(Thermal Management System) heater in a fuel cell vehicle has been developed to prevent a decline of fuel cell durability and cold start durability. Main functions of the COD(Cathode Oxygen Depletion) heater are depletion of oxygen in a cathode as heat energy and consumption of electric power for rapid warming up of a fuel cell stack. This paper covers subjects including the design specification of a heater, heater controller for detection of overheat and reliability assessment including coolant pressure cycle test of a heater. To verify the design concept, burst pressure and deformation analysis of plastic housing were carried out. Also, temperature distribution analysis of heater surface and coolant inside of housing were carried out to verify the design concept. By designing the plastic housing instead of a steel housing, the 30% weight lightening and 50% cost reduction were attained. A module-based design of a TMS system including a heater or reducing the watt density of a heater is a problem to be solved in the near future work.

냉시동시 채널 막힘이 고분자전해질연료전지의 장기성능에 미치는 영향 (Effects of channel blockages during cold start up on durability of proton exchange membrane fuel cell)

  • 이상엽;김형준;조은애;장종현;임태훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.33-36
    • /
    • 2008
  • Cell degradation when anode channels are blocked during cold start up was tested and measured. Proton exchange membrane fuel cell (PEMFC) stacks with several configurations of channel blockages were operated and decay in performance was analyzed. When only channels near hydrogen inlet were blocked, performance was rarely changed. In contrast, significant cell reversal occurred and considerable amount of $CO_2$ was produced when all channels near inlet and outlet were blocked. In the case, it was also observed that performance was severely decreased in the area where hydrogen was not supplied sufficiently.

  • PDF

연료전지 자동차의 물탱크 해빙과정에 대한 수치해석적 연구 (Numerical Analysis of Melting Process in a Water Tank for Fuel-cell Vehicles)

  • 김학구;정시영;허남건;임태원;박용선
    • 설비공학논문집
    • /
    • 제19권8호
    • /
    • pp.585-592
    • /
    • 2007
  • Good cold start characteristics are essential for satisfactory operation of fuel cell vehicles. In this study, the melting process has been numerically investigated for a water tank used in fuel cell vehicles. The 2-D model of the tank containing ice and plate heaters was assumed and the unsteady melting process of the ice was calculated. The enthalpy method was used for the description of the melting process, and a FVM code was used to solve the problem. The feasibility study compared with other experiment showed that the developed program was able to describe the melting process well. From the numerical analysis carried out for different wall temperatures of the pate heaters, some important design factors could be found such as local overheating and pressurization in the tank.

운전조건에 따른 PEMFC 스택 냉시동 특성 연구 (Effect of Operating Conditions on Cold Startup of PEMFC Stack)

  • 고재준;이종현;김세훈;안병기;임태원
    • 한국수소및신에너지학회논문집
    • /
    • 제20권3호
    • /
    • pp.224-231
    • /
    • 2009
  • The improvement of cold start capability is one of the most challenging tasks to be solved for commercialization of fuel cell vehicle. In this study, cold start test and ice blocking test(IBT) of fuel cell stack were carried out under various operating conditions. This fuel cell stack can be thawed from -20$^{\circ}$C within 25s and the voltage change was found to be comprised of 4 steps; the first step is the voltage decrease by overpotential, the second step is the voltage increase by the cell temperature increase, the third step is the voltage decrease by ice blocking, and the last step is the voltage increase by thawing. Bootstrap startup was failed after shutdown at temperature under 40$^{\circ}$C because of much condensed water in the fuel cell. Quantitative estimation of cold start capability have been demonstrated by ice blocking test(IBT). In the results, it was found that cold start capability was improved double every 10$^{\circ}$C from 30$^{\circ}$C to 65$^{\circ}$C and enhanced by 30% at the condition of SR 3/4 compared to SR 1.5/2.0 and enhanced by 20% with dry purge condition compared to with RH 50% purge condition.

저온영역에서 단열용기를 이용한 연료전지 모의 실험 (Simulation Experiment of PEMFC Using Insulation Vessel at Low Temperature Region)

  • 조인수;권오정;김유;현덕수;박창권;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제19권5호
    • /
    • pp.403-409
    • /
    • 2008
  • Polymer electrolyte membrane fuel cell (PEMFC) is very interesting power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, improvement of performance, effect of temperature and initial start at low temperature. These problems can be approached to be solved by using experiment and mathematical method which are general principles for analysis and optimization of control system for heat and hydrogen detecting management. In this paper, insulation vessel and control system for stable operation of fuel cell at low temperature were developed for experiment. The constant temperature capability and the heating time at sub-zero temperatures with insulation control system were studied by using a heating bar of 60W class. PEMFC stack which was made by 4 cells with $50\;mc^2$ active area in each cell is a thermal source. Times which take to reach constant temperature by the state of insulation vacuum were measured at variable environment temperatures. The test was performed at two conditions: heating mode and cooling mode. Constant temperature capability was better at lower environment temperature and vacuum pressure. The results of this experiment could be used as basis data about stable operation of fuel cell stack in low temperature zone.

복합재료 샌드위치 엔드플레이트의 연료전지 냉시동성 향상에 미치는 효과 (Effect of Composite Sandwich Endplates on the Improvement of Cold Start Characteristics for PEMFC)

  • 서정도;고재준;안병기;유하나;이대길
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.859-867
    • /
    • 2011
  • The cold start problem is one of major obstacles to overcome for the commercialization of fuel cell vehicles. However, the cold start characteristics of fuel cell systems are very complicated since various phenomena, i.e. ice-blocking, electro-chemical reactions, heat transfer, and defrosting of BOP components, are involved in them. This paper presents a framework to approach the problem at a full stack scale using Axiomatic Design (AD). It was characterized in terms of Functional Requirements (FRs) and Design Parameters (DPs) while their relations were established in a design matrix. Considering the design matrix, the endplates should have low thermal conductivity and capacity without increase in weight or decrease in structural stiffness. Consequently, composite sandwich endplates were proposed and examined both through finite element analyses and experiments simulating cold start conditions. From the examinations, it was found that the composite sandwich endplates significantly contributed to improving the cold start characteristics of PEMFC.