• Title/Summary/Keyword: 연료시스템

Search Result 2,237, Processing Time 0.023 seconds

Improvement of Insulation System for LNG Storage Tank Base Slab (LNG 저장탱크 바닥판 단열 시스템 개선)

  • Lee, Yong-Jin;Lho, Byeong-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.141-147
    • /
    • 2010
  • Liquefied natural gas(LNG) is natural gas that has been converted temporarily to liquid form for ease of storage and transport it. Natural gas is the worlds cleanest burning fossil fuel and it has emerged as the environmentally preferred fuel of choice. In Korea, the demand of this has been increased since the first import from the Indonesia in 1986. LNG takes up about 1/600th the volume of natural gas in the gaseous state by cooling it to approximately $-162^{\circ}C(-260^{\circ}F)$. The reduction in volume therefore makes it much more cost efficient to transport and store it. Modern LNG storage tanks are typically the full containment type, which is a double-wall construction with reinforced concrete outer wall and a high-nickel steel inner tank, with extremely efficient insulation between the walls. The insulation will be installed to LNG outer tank for the isolation of cryogenic temperature. The insulation will be installed in the base slab, wall and at the roof. According to the insulation's arrangement, the different aspects of temperature transmission is shown around the outer tank. As the result of the thermal & stress analysis, by the installing cellular glass underneath the perlite concrete, the temperature difference is greatly reduced between the ambient temperature and inside of concrete wall, also reducing section force according to temperature load.

Extraction of Intracellular Lipids from Recombinant E. coli for Improving Long-chain Fatty Acid Production (긴 사슬 지방산 생산을 위해 재조합된 E. coli로부터의 세포 내 지질 추출)

  • Ham, Su Mi;Yoo, In Sang;Park, Sang Joon;Kim, Ji Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.482-486
    • /
    • 2013
  • Recently, biohydrocarbons are gathering an interest as a new bioenergy due to the versatile applicability. In the present work, a process is proposed for the recovery of lipids from Recombinant E. coli MG1655 which provides longer chain fatty acids. After the growth of the recombinant E. coli, the cells were disrupted by high pressure homogenizer for obtaining intracellular lipids and the resulting solutions were centrifuged and extracted. For the efficient cell disruption with high pressure homogenizer, the pressure higher than 5,000 psi was required. In addition, under the conditions of applied pressure 5,000 to 20,000 psi, 1~3 pass homogenizing was enough for the more than 90% cell disruption. As organic solvents for extraction of lipid, hexane/isopropyl alcohol and ethyl acetate/ethanol systems showed excellent extracting power. With these solvent systems, the 60% lipid could be recovered. Moreover it was found that the extracted lipids contained long-chain fatty acids such as $C_{12}$, $C_{14}$, $C_{16}$ and $C_{18}$.

Hydrogen Production for PEMFC Application in Plasma Reforming System (PEMFC용 플라즈마 개질 시스템의 수소 생산)

  • Yang, Yoon Cheol;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.1002-1007
    • /
    • 2008
  • The purpose of this paper studied the optimal hydrogen production condition of plasma reforming system to operate the PEMFC. Plasma reforming reactor used with Ni catalyst reactor at the same time, So $H_2$ concentration increased. Also the WGS and PrOx reactor were designed to remove CO concentration under 10 ppm, because CO has effect on catalyst poisoning of PEMFC. The maximum $H_2$ production condition in plasma reforming system was S/C ratio 3.2, $CH_4$ flow rate 2.0 L/min, catalytic reactor temperature $700{\pm}5^{\circ}C$ and input power 900 W. At this time, the concentration of produced syngas was $H_2$ 70.2%, CO 7.5%, $CO_2$ 16.2%,$CH_4$ 1.8%. The hydrogen yield, hydrogen selectivity and $CH_4$ conversion rate were 56.8%, 38.1% and 92.2% respectively. The energy efficiency and specific energy requirement were 37.0%, 183.6 kJ/mol. In additional, The experiment of $CO_2/CH_4$ ratio proceeded. Also WGS reactor experiment was proceeding on optimum condition of plasma reactor and the exit concentration were $H_2$ 68%, CO 337 ppm, $CO_2$ 24.0%, $CH_4$ 2.2%, $C_2H_4$ 0.4%, $C_2H_6$ 4.1%. At this time, experiment result of PrOx reactor were $H_2$ 51.9%, CO 0%, $CO_2$ 17.3%.

Comparison of Control Strategies for Military Series-Type HEVs in Terms of Fuel Economy Based on Vehicle Simulation (시뮬레이션을 이용한 군용 직렬형 HEV 의 주행 전략에 따른 연비 성능 비교에 관한 연구)

  • Jung, Dae-Bong;Kim, Hyung-Jun;Kang, Hyung-Mook;Park, Jae-Man;Min, Kyoung-Doug;Seo, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • Military vehicles, compared to conventional vehicles, require higher driving performance, quieter operation, and longer driving distances with minimal fuel supplies. The series hybrid electric vehicle can be driven with no noise and has high initial startup performance, because it uses only a traction motor that has a high startup torque to drive the vehicle. Moreover, the fuel economy can be improved if the vehicle is hybridized. In series hybrid electric vehicles, the electric generation system, which consists of an engine and a generator, supplies electric energy to a battery or traction motor depending on the vehicle driving state and battery state of charge (SOC). The control strategy determines the operation of the generation system. Thus, the fuel economy of the series hybrid electric vehicle relies on the control strategy. In this study, thermostat, power-follower, and combined strategies were compared, and a 37% improvement in the fuel economy was implemented using the combined control strategy suggested in this study.

An Analysis of Economic Evaluation Related to Lane Departure Warning System (주행로이탈예방지원기술 관련 경제성평가 분석)

  • Ryu, Byung-Yong;Choi, Ji-Eun;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.5
    • /
    • pp.85-97
    • /
    • 2009
  • Continuous increase of traffic demand has caused confirmed congestion, fuel consumption, emission, safety, etc. as serious social problems at the present time. The Smart Highway Project has been conducted by the supervision of Ministry of Land, Transport and Maritime Affaire to solve such problems since 2007. The Smart Highway Project includes LDWS (Lane Departure Warning System), a system to prevent broadside collisions and accidents, as a sub-technology of road-vehicle associating technologies. This system warns drivers when their vehicle deviates from the lane where they are traveling at high-speed on the highway. In this paper, the LDWS was evaluated using CBA to analyze the socio-economic consequences. Estimated benefits include reduction of accidents and convenience of drivers. In addition, the economics according to the distribution rate is various when it comes to Lane Departure Warning Technology, the economics of both cases - positive scenario and negative scenario, which was analyzed. As a result, the Benefit-Cost ratio(B/C) of negative scenario showed 0.97 in 2020 and 1.36 in 2030 while B/C ratio of the positive scenario showed 1.04 in 2020 and 1.59 in 2030, which indicated that the higher distribution rate is, the higher the economics generates. Therefore, it is judged that the introduction of Lane Departure Warning Technology will result in high economics.

  • PDF

The linear model analysis and Fuzzy controller design of the ship using the Nomoto model (Nomoto모델을 이용한 선박의 선형 모델 분석 및 퍼지제어기 설계)

  • Lim, Dae-Yeong;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.821-828
    • /
    • 2011
  • This paper developed the algorithm for improving the performance the auto pilot in the autonomous vehicle system consisting of the Track keeping control, the Automatic steering, and the Automatic mooring control. The automatic steering is the control device that could save the voyage distance and cost of fuel by reducing the unnecessary burden of driving due to the continuous artificial navigation, and avoiding the route deviation. During the step of the ship autonomic navigation control, since the wind power or the tidal force could make the ship deviate from the fixed course, the automatic steering calculates the difference between actual sailing line and the set course to keep the ship sailing in the vicinity of intended course. first, we could get the transfer function for the modeling of ship according to the Nomoto model. Considering the maneuverability, we propose it as linear model with only 4 degree of freedoms to present the heading angle response to the input of rudder angle. In this paper, the model of ship is derived from the simplified Nomoto model. Since the proposed model considers the maximum angle and rudder rate of the ship auto pilot and also designs the Fuzzy controller based on existing PID controller, the performance of the steering machine is well improved.

Biodiesel Production and Nutrients Removal from Piggery Manure Using Microalgal Small Scale Raceway Pond (SSRP) (미세조류 옥외배양 시스템을 이용한 돈분 액체 비료의 영양염류 제거 및 바이오디젤 생산)

  • Choi, Jong-Eun;Kim, Byung-Hyuk;Kang, Zion;Oh, Hee-Mock;Kim, Hee-Sik
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.1
    • /
    • pp.26-34
    • /
    • 2014
  • Due to the rapid energy consumption and fossil fuel abundance reduction, the world is progressively in need of alternative and renewable energy sources such as biodiesel. Biodiesel from microalgae offers high hopes to the scientific world for its potential as well as its non-competition with arable lands. Taking consideration to reduce the cost of production as well as to attain twin environmental goals of treatment and use of animal waste material the microalgal cultivation using piggery manure has been tested in this study. Unialgal strains such as Chlorella sp. JK2, Scenedesmus sp. JK10, and an indigenous mixed microalgal culture CSS were cultured for 20 days in diluted piggery manure using Small Scale Raceway Pond (SSRP). Biomass production and lipid productivity of CSS were $1.19{\pm}0.09gL^{-1}$, $12.44{\pm}0.38mgL^{-1}day^{-1}$, respectively and almost twice that of unialgal strains. Also, total nitrogen and total phosphorus removal efficiencies of CSS was 93.6% and 98.5% respectively and 30% higher removal efficiency compared to the use of unialgal strains. These results indicate that the piggery manure can provide microalgae necessary nitrogen and phosphorus for growth thereby effectively treating the manure. In addition, overall cost of microalgal cultivation and subsequently biodiesel production would be significantly reduced.

Determination of fatty acid methyl esters (FAME) content in aviation turbine fuel using multi-dimensional GC-MS (Multi-dimensional GC-MS를 이용한 항공터빈유의 FAME 함량 분석)

  • Youn, Ju Min;Doh, Jin Woo;Hwang, In Ha;Kim, Seong Lyong;Kang, Yong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.717-726
    • /
    • 2017
  • The current allowable cross-contamination level of fatty acid methyl esters (FAME) in aviation turbine fuel (AVTUR) is 50 mg/kg, due to that the presence of FAME in AVTUR can significantly impact the fuel supply system and jet engine. It has been difficult to analyze the level of FAME in AVTUR, since it is consisted of a lot of hydrocarbons. In this study, thus, a new method using multi-dimensional GC-MS (MDGC-MS) was proposed in order to determine the FAME level in AVTUR effectively. Applying to MDGC-MS with Deans switching system enabled us to detect and quantify the FAME with low carbon numbers such as those derived from coconut oil and palm kernel oil. The matrix effect of MDGC-MS method, which could shift the FAME peaks to slightly longer retention times, was reduced by 20 times compared with that of 1-dimensional GC-MS reference method. This developed method could be suitable for qualitative and quantitative analyses to determine the contamination level of trace FAME in AVTUR.

Reclaimed Products to Recycling and Energy Recovery for Sustainable Use of Closed Non Sanitary Landfills through Reclamation Works (사용종료(使用終了) 비위생매립지(非衛生埋立地)의 순환적(循環的) 사용(使用)을 위한 선별물질(選別物質)의 활용(活用) 가능성(可能性) 평가(評價))

  • Lee, Byung-Sun;Na, Kyung-Duk;Han, Sang-Kuk;Phae, Chae-Gun;Oh, Sae-Eun
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.17-29
    • /
    • 2012
  • potential assessment of converting closed non sanitary landfills into sustainable landfill through the reclamation works(= landfill mining project) of illegal landfill discovered in land development site using Sustainable Landfill Reclamation system(SLR-system) was investigated. The SLR system had treatment capacity of 91.4 $m^3/hr$ (130.61 ton/hr) in condition of 28.0% of water content. Recovery ratio and purity of sorted soil were 98.9% and 99.66%, respectively. Sorted combustibles were 91.8% and 92.0%, respectively. Especially, high heating value (HHV) and low heating value(LHV) of combustibles were 4,282kcal/kg and 3,636 kcal/kg, respectively, in considering the energy content and recovery ratio of combustibles. Therefore, combustibles separated from landfill site have higher value than Fluff RDF standard value(3,500kcal/kg) of MOE. RDF can be produced with combustibles by 84.43%. Averaged size and organic foreign matter content of the sorted soil were less than 035mm and 0.31 %(VN), respectively. In addition, concentration of all contents of hazardous matters containing soils met safety standards. Therefore, it is possible to be recycled as refilling and cover materials to rebuild Sustainable landfills by 98.42%.

Optimal Gas Detection System in Cargo Compressor Room of Gas Fueled LNG Carrier (가스추진 LNG 운반선의 가스 압축기실에 설치된 가스검출장치의 최적 배치에 관한 연구)

  • Lee, Sang-Won;Shao, Yude;Lee, Seung-Hun;Lee, Jin-Uk;Jeong, Eun-Seok;Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.617-626
    • /
    • 2019
  • This study analyzes the optimal location of gas detectors through the gas dispersion in a cargo compressor room of a 174K LNG carrier equipped with high-pressure cargo handling equipment; in addition, we propose a reasonable method for determining the safety regulations specified in the new International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC). To conduct an LNG gas dispersion simulation in the cargo compressor room-equipped with an ME-GI engine-of a 174 K LNG carrier, the geometry of the room as well as the equipment and piping, are designed using the same 3D size at a 1-to-1 scale. Scenarios for a gas leak were examined under high pressure of 305 bar and low pressure of 1 bar. The pinhole sizes for high pressure are 4.5, 5.0, and 5.6mm, and for low pressure are 100 and 140 mm. The results demonstrate that the cargo compressor room will not pose a serious risk with respect to the flammable gas concentration as verified by a ventilation assessment for a 5.6 mm pinhole for a high-pressure leak under gas rupture conditions, and a low-pressure leak of 100 and 140 mm with different pinhole sizes. However, it was confirmed that the actual location of the gas detection sensors in a cargo compressor room, according to the new IGC code, should be moved to other points, and an analysis of the virtual monitor points through a computational fluid dynamics (CFD) simulation.