• Title/Summary/Keyword: 연료분사관

Search Result 38, Processing Time 0.03 seconds

Penetration and Breakup Characteristics of Pulsed Liquid Jets in Subsonic Crossflowse (아음속 수직분사제트에서의 가진 분무의 분무 특성연구)

  • Kim, Jin-Ki;Song, Jin-Kwan;Kim, Min-Ki;Hwang, Yong-Seok;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.83-88
    • /
    • 2007
  • The spray characteristics and liquid column penetration of steady and pulsed injection measurements have been experimentally studied using high speed camera in liquid jets injected into subsonic crossflow. The objectives of this research are to comparison the spray characteristics of steady injection with pulsed injection. Moreover. the effects of frequency are also studied. As the result, This research has been showed that pulsed injection has different penetration compared with steady injection.

  • PDF

Measurements and Calculation of Injection Mass Rate of LFG for Intake Injection in Spark Ignition Engines (불꽃점화 엔진의 흡기관 분사를 위한 매립지가스 분사량의 측정 및 계산)

  • Kim, Kyoungsu;Choi, Kyungho;Jeon, Wonil;Kim, Bada;Lee, Daeyup
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.36-42
    • /
    • 2021
  • When the landfill gas generated at the landfill site is released into the atmosphere, methane gas with a high global warming potential is emitted, which adversely affects climate change. When methane contained in landfill gas is used as fuel for internal combustion engines and burned to generate electricity, it is emitted into the atmosphere in the form of carbon dioxide, which can contribute to lowering the global warming potential. Therefore, in order to use the landfill gas as fuel for power generation using an internal combustion engine, it is important to increase the thermal efficiency of the engine. Thus, it is necessary to use a fuel supply system in which gas is injected using an electronically controlled injector at an intake port for each cylinder rather than a fuel supply technology using the conventional mixer technology. In order to use the electronically controlled gas injection method, it is important to accurately measure the mass flow rate according to the conditions of using landfill gas. For this, a study was conducted to measure the injection amount and calculate them in order for the intake port gas injection of landfill gas.

Simulation Study for the Performance Improvement of the Injector Module for Heavy-duty CNG Engines (대형 CNG 엔진용 인젝터 모듈의 성능 개선을 위한 연구)

  • Kim, Yong-Rae;Park, Won-A;Kim, Chang-Gi;Lee, Jang-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2016
  • A fuel supply system of heavy-duty CNG engine is composed as a module structure which is integrated by about 6 injectors. There are only one input and output passage for gas fuel supply in this injector module. The response performance for transient operation of an CNG engine is very poor because only one output fuel supply line is connected to the intake pipe after a throttle valve. In this study, a new guideline and internal flow design for the CNG injector module is suggested for the improvement of response performance by fluid dynamic simulations. As a result, the response performance of gas fuel supply can be improved by decreasing the total volume of internal flow passages and a same distance design from each injector to the exit of module shows good response performance and acquirement of linearity of fuel supply. But the injection order has little influence to injection performances.

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (수직분사제트에서 액적크기특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.59-63
    • /
    • 2006
  • A direct photograph measurement technique was used to determine the spatial distribution of the spray droplet diameter in subsonic crossflow and it also obtain that SMD distribution by using PLLIF technique. The injector internal flow was classified as three modes such as a normal, cavitation, and hydraulic flip. The objectives of this research are getting a droplet distribution and drop size measurement of normal flow and compare with the other flow effects. Although the study showed visually that drop size were spatially dependent of Air-stream velocity, fuel injection velocity, and normalized distance from the injector exit length.(x/d, y/d) There are also difference characteristics between cavitation, hydraulic flip and the normal flow.

  • PDF

A Study on Effects of Fuel Injection System on the Performance in a V8-Type Diesel Engine (V8형 디젤엔진의 성능에 미치는 분사계의 영향에 관한 연구)

  • 박병학
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.248-256
    • /
    • 1998
  • The effects of fuel injection system on the performance in a V8-type diesel engine was stuided in this paper. Fuel injection system is important factor which influence the engine performance and exhaust emission bcasuse the properties in the injected fuel depend on the atomization characteristics. In this study using diesel engine of 17.7:1 compression ration the engine performance and exhaust emission are measured experimentally according to 1000, 1400, 2200rpm in the full-load conditions. The chosen parameters for the major system are such diameter shape of combustion chamber and intake system. The results are as follows: As the nozzle hole diameter and injection angle become smaller and as the injection timing gets advanced the fuel consumption and concentration of smoke are decreasing whereas concentration of $NO_{x}$ is increasing. Andconcentration of $NO_{x}$ is increasing in accordance with the increase of injection pipe diameter and nozzle protrusion. Also it is shown that re-entrant type combustion chamber is more effective than that of toroidal type in the improvement of $NO_{x}$ reduction.

  • PDF

Effects of Angled Injection on the Spray Characteristics of Liquid Jets in Subsonic Crossflow (아음속 수직분사제트에서 분사각도 영향에 대한 분무특성 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Lee, Jang-Su;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.166-174
    • /
    • 2009
  • The liquid column trajectory and column breakup length characteristics have been experimentally studied in angled jets injected into subsonic crossflow. Pulsed shadowgraph photography and Planar Liquid Laser Induced Fluorescence measurements were used to determine the angled effects. And the main objectives of this research are to get a empirical formula of liquid column trajectory and breakup length with below the $90^{\circ}$ degree injection angle conditions, and were compared with previous results. It was also found that the empirical formula, which reversed injection conditions of air stream. As the result, This has been shown that liquid column trajectories and column breakup length were spatially dependent on various injection angle, normalized injector exit diameter, air-stream and fuel injection velocity. Furthermore, the empirical formula of liquid column trajectories and breakup length has been some different of drag coefficient results between normal angled injection and reversed injection in subsonic crossflow.

A Theoretical Study on Flow and Pressure Variation Characteristics of Fuel Supply System in Diesel Engine (디젤엔진 연료계통의 유동 및 압력 변동특성에 관한 이론적 연구)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.12-23
    • /
    • 1993
  • Combustion phenomenon in diesel engine is mainly governed by characteristics of fuel injection and fuel spray system affected by its dimensions and operating condition. Fuel supply system is consisted of fuel injection pump, high pressure pipe and injection nozzle. In order to develope the more economical diesel fuel injection system, it is in need to carryout the fairly wide range experiments, which is quite impossible. Therefore, theoretical analysis for the numberous parameters is powerful method in this case. In the present study, equations of continuity of fuel oil in fuel injection system are solved to obtain the flow and pressure variation in diesel fuel system affected by injection pump speed, plunger diameter, pipe length and nozzle opening pressure.

  • PDF

A Study on Types and Reasons of Engine Troubles Related to Fuel Oil (연료유에 의한 선박 디젤엔진 손상에 관한 연구)

  • Na, Eun-Young;Baik, Shin-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.143-150
    • /
    • 2009
  • Fuel oil mostly used for a ship is made from crude oil by refining process. In order to produce plenty of high-quality fuel oil, the Fluid catalytic cracking(FCC) method is widely adopted to many refinery factories during the decomposition process from high molecule into lower molecule. The major constituents in spent FCC catalysts are Si, Al, Fe, Ti, alkali metals and some others. The spent catalyst is also composed small amounts of rare metals such as Ce, Nd, Ni and V. The big problem in FCC oil is mixing the catalyst in the oil. This reason is unstable separation of FCC catalyst in separator. Such a FCC catalyst will become a reason of heavy wear down in moving parts of engine. The impurity in oil is ash and deposit compound, such as Al, Si, Ni, Fe and V, which will accelerate the wear down on fuel pump, fuel injection valve cylinder liner and piston ring. It is important to find a basic reason of an engine trouble for preventing similar troubles anymore. Insurance compensation will be different according to the reason of an engine trouble which might be natural abrasion or other external causes. In this study, types and reasons of engine troubles related to fuel oil will be covered.

  • PDF

Humidification of Air Using Water Injector and Cyclonic Separator (관 내 삽입 인젝터와 사이클론을 이용한 공기 가습)

  • Kim, Beom-Jun;Kim, Sung-Il;Byun, Su-Young;Kim, Min-Soo;Kim, Hyun-Yoo;Kwon, Hyuck-Ryul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.491-498
    • /
    • 2010
  • Humidification of PEM fuel cells is necessary for enhancing their performance and lifetime. In this study, a humidification system was designed and tested; the system includes an air-supply tube (inner diameter: 75 mm) through which a nozzle can be directly inserted and a cyclonic separator for the removal of water droplets. Three types of nozzles were employed to study the influence of injection pressure, air flow rate, and spray direction on the humidification performance. To evaluate the humidification performance, the concept of humidification efficiency was defined. In the absence of an external heat source, latent heat for evaporation will be supplied by the own enthalpies of water and air. Thus, the amount of water sprayed from the nozzle is the most critical factor affecting the humidification efficiency. Water droplets were efficiently removed by a cyclonic separator, but re-entrainment occurred at high air flow rates. The absolute humidity and humidification efficiency were $21.29\;kJ/kg_{da}$ and 86.57%, respectively, under the following conditions: nozzle type PJ24; spray direction angle $90^{\circ}$; injection pressure 1200 kPa; air flow rate 6000 Nlpm.

小型 디이젤機關에 있어서 알코올 利용에 관한 硏究

  • 노상순;허병무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.386-394
    • /
    • 1987
  • The method of methanol using in diesel engines hasn't been established yet because of it's low ignition characters. But many studies about it with many methods have been doing recently. If alcohol can be used in diesel engines, smoke and NO$\sub$x/, which is a big problem in diesel engines, can be reduced large. The purpose of this study is to establish using method of alcohol, as a substitute fuel. In this study, Combustion characters, engine performance and exhaust gas emissions are checked by using gasfication diesel method. Concluding remarks of this study are as follows. (1) Methanol can be used within 30% of total inducing energy, if above that rate, it can't be used because of knocking and bad operating condition. (2) Under the low load, the effect of methanol inducing of fuel consumption is somewhat bad, but under the high load, the effect is very good. (3) Under the high load, smoke limit is a marked improvement with methanol inducing.