• Title/Summary/Keyword: 연료물성

Search Result 254, Processing Time 0.026 seconds

Finite Element Analysis for Performance Evaluation of Type III Hydrogen Pressure Vessel for the Clean Tech Fuel Cell Vehicles (친환경 연료전지 자동차용 Type III 수소 압력용기의 구조성능 평가를 위한 유한 요소 해석)

  • Son, Dae-Sung;Chang, Seung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.938-945
    • /
    • 2012
  • To design and estimate material failures of Type III pressure vessels, which have excellent stability and performance, various modeling techniques have been introduced. This paper provided a hybrid modeling technique composed of ply-based modeling for a cylinder part and laminate-base modeling technique for a dome part for enhancing modeling efficiency. The ply-based modeling technique provided accurate ply stresses directly for predicting material failure, on the other hand, additional manipulations in stress calculations, which may cause some errors, were needed for the case of the laminate-based modeling technique. The ply stresses in fiber, transverse and in-plane shear directions were compared with the corresponding material strengths to predict material failure.

Structural Robust Design of PEMFC Gasket Using Taguchi Method (다구찌 방법을 이용한 고분자 전해질 연료전지 가스켓의 강건 구조 설계)

  • Yoon, Jin-Young;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.740-746
    • /
    • 2008
  • In this paper, robust structural design of the PEMFC stack gasket is pursued with Taguchi method by considering the noise factor in stack assembly. The study of noise problem in stacking is required to secure the safety and performance improvement of PEMFC stack. The design parameters in the Taguchi method are selected so that the structural responses are insensitive to the noise factors. In the gasket analysis, a Mooney-Rivlin strain energy function is used to consider hyperelasticity between load and displacement. By uni-axial and equi-biaxial tension tests of the gasket, the material properties are determined for the use in robust design of PEMFC gasket. The robust design of the PEMFC stack may provide structural reliability.

Effect of Nation binder with different equivalent weight on cell performance (이온당량(EW)이 다른 Nafion binder가 고분자 전해질 연료전지의 성능에 미치는 영향)

  • Kim, Kun-Ho;Kim, Hyoung-Juhn;Lim, Tae-Hoon;Lee, Kwan-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.129-132
    • /
    • 2007
  • 고분자 전해질 연료전지의 성능에 영향을 주는 많은 인자들 중에서도 촉매층의 조성과 구조의 최적화는 성능변화에 큰 요인으로 작용 된다. 촉매층내 반응 활성점인 삼상계면을 형성시키기 위해 함침하는 Nafion binder를 anode와 cathode의 두 전극에 이온당량(Equivalent weight, EW)이 동일하게 함침시켜 그 성능을 확인하였다. 그 결과를 토대로 anode와 cathode에 이온당량을 각기 다르게 하여 각각의 전극마다 이온당량이 미치는 영향에 대해서도 살펴보았다. Anode와 cathode의 이온당량을 동일하게 EW1100, EW1000, EW900으로 변화 시켜주었을 경우 이온당량의 물성치가 상대적으로 향상된 EW900의 단위 전지 성능이 가장 우수하였으며, 이온당량이 EW900이었을 때 최적의 Nafion binder 함침량은 EW1100의 Nafion binder 함침량과 동일하였다. Anode와 cathode에 함침하는 Nafion binder의 이온당량을 각각 EW1100과 EW900, EW900과 EW1100으로 MEA를 제조하여 전극에 따라 이용당량이 미치는 영향을 살펴보았다.

  • PDF

Regenerative Cooling Channel Design of a Supersonic Combustor Considering High-Temperature Property of Fuel (연료 고온물성을 고려한 초음속 연소기 재생냉각 유로 설계)

  • Yang, Inyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.37-46
    • /
    • 2018
  • A design study on the cooling channel configuration in a regeneratively cooled supersonic combustor was performed. The flow parameters on the hot- and cold-side channels were calculated using a quasi-one-dimensional model. The heat transfer between these two sides was estimated as a part of the flow calculation. For the reference configuration, the total amount of heat exchanged was 10.7 kW, the heat flux was $566kW/m^2$, and the fuel temperature increase between the inlet and outlet was 153 K. Seven designs of the heat exchanger channel were compared for their heat transfer performance.

Study on Properties of High Energetic and High Dense Cyclic Hydrocarbons by the Structure (고에너지 고밀도 고리탄화수소 화합물의 구조에 따른 물성 연구)

  • Cho, Joon-Hyun;Kwon, Tae-Soo;Jeong, Deok-Jin;Oh, Chang-Ho;Park, Dae-In;Han, Jeong-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.463-466
    • /
    • 2008
  • The weapon systems with a liquid propulsion engine have been used for various purposes and demands of the liquid fuel with variety of properties for its operational purposes and environment. The cyclic hydrocarbons including norbornane or dicyclopentane structures have many applications to the guided weapon systems due to the high density and high energy characteristics, also efforts have been given in many fields. In this study, the cyclic hydrocarbons that we designed and fabricated were investigated to obtain tendency on the structures.

  • PDF

The Characteristics and Application of Virgin FKM Rubber/Recycled FKM Rubber Blend (재생 FKM Rubber/신재 FKM Rubber 블렌드의 특성 및 응용)

  • Park, Hyun-Ho;Lee, Chang-Seop
    • Elastomers and Composites
    • /
    • v.40 no.2
    • /
    • pp.104-111
    • /
    • 2005
  • Virgin fluororubber(FKM) that is one of the highly-functionalized and expensive special rubber, and recycled FKM that is crushed by high temperature shear-crushing technique from recycled FKM were blended with the various mixing ratio to rubber blends. The cure characteristics and physical properties of these blended rubber compounds were investigated with various contents of recycled FKM and physical properties fur heat and fuels were also measured. Recycled FKM which is prepared by high temperature shear-crushing technique were blended to virgin FKM with the range of $0{\sim}50$ phr. The physical properties indicated that the rubber blend of recycled FKM with 30 phr turned out to be the best compound showing good dispersibility, heat resistance and fuel resistance and inexpensive in price.

A Study on the Effect of Coal Properties on the Electrochemical Reactions in the Direct Carbon Fuel Cell System (석탄 물성에 따른 직접탄소 연료전지의 전기화학 반응 특성 연구)

  • Ahn, Seong-Yool;Eom, Seong-Yong;Rhie, Young-Hoon;Moon, Cheor-Eon;Sung, Yon-Mo;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.1033-1041
    • /
    • 2012
  • Performance evaluation of a direct carbon fuel cell (DCFC) was conducted according to coals and a graphite particle. Several fuel properties such as thermal reactivity, textural structure, gas adsorption characteristic, and functional groups on the surface of fuels were investigated and their effects on electrochemistry were discussed. The strong carbon structure inside of fuels led the rapid potential decreasing in high current density region, because it caused small surface area and low pore volume. The functional groups on the surface were related to the low current density region. The maximum current density and power density of fuels were affected by the total carbon content in fuels. The effect of operating conditions such as stirring rate and operating temperature was investigated in this study.

Analysis of Corrosion Characteristics for TiN- and Ti/TiN-coated Stainless Steel Bipolar Plate in PEMFC (고분자전해질 연료전지에서 TiN과 Ti/TiN이 코팅된 스텐레스 강 분리판의 부식 특성)

  • Han, Choonsoo;Chae, Gil-Byung;Lee, Chang-Rae;Choi, Dae-Kyu;Shim, Joongpyo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.118-127
    • /
    • 2012
  • TiN or Ti/TiN was coated on stainless steel as bipolar plate in polymer electrolyte membrane fuel cells (PEMFCs) to improve their corrosion resistance and electric conductivity, and their properties were examined under fuel cell operating condition. After 200 hours operation, the behaviors for the corrosion, crack and dissolution of coating layer were investigated by various techniques. The corrosion and exfoliation of coating layer were considerably generated except for SUS316L-Ti/TiN after fuel cell operation even if the electric conductivity and corrosion resistance of coated stainless steel bipolar plates were improved. The adoption of Ti layer between TiN layer and the surface of stainless steel enhanced the adhesion of TiN layer and decreased the possibility of corrosion by the increase of coating layer.

A Study on Fuel Economy Determination of Natural Gas Vehicle Using Carbon Balance Method (탄소평형법을 적용한 천연가스 자동차의 연비 산출 방법 고찰)

  • Han, JeongOk;Chae, JungMin;Lee, DongWon
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • This study is aimed to investigate the US code and European code on the evaluation of fuel economy of natural gas vehicles and deduce the formula suitable for domestic natural gas fuel. The fuel consumption formula have been derived by carbon balance relation between fuel composition and exhaust emission. The US code does not limit the composition of the test gas, but European code should be used the reference gases such as G20 and G23. In the case of NGV using domestic city gas, it is confirmed that the fuel economy determined by European code is 12% worse than that of US code because of difference of test gas. Also, a method of determining the fuel properties from the calorific value is proposed to evaluate the fuel economy of natural gas vehicles.

Understanding of Polymer Electrolyte Membrane for a Unitized Regenerative Fuel Cell (URFC) (일체형 재생 연료전지(URFC)용 고분자 전해질 막의 이해)

  • Jung, Ho-Young
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.125-132
    • /
    • 2011
  • A unitized regenerative fuel cell (URFC) as a next-generation fuel cell technology was considered in the study. URFC is a mandatory technology for the completion of the hybrid system with the fuel cell and the renewable energy sources, and it can be expected as a new technology for the realization of hydrogen economy society in the $21^{st}$ century. Specifically, the recent research data and results concerning the polymer electrolyte membrane for the URFC technology were summarized in the study. The prime requirements of polymer electrolyte membrane for the URFC applications are high proton conductivity, dimensional stability, mechanical strength, and interfacial stability with the electrode binder. Based on the performance of the polymer electrolyte membrane, the URFC technology combining the systems for the production, storage, utilization of hydrogen can be a new research area in the development of an advanced technology concerning with renewable energy such as fuel cell, solar cell, and wind power.